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Abstract:  Fluorescence is the property where molecules absorb electromagnetic
radiation usually in the ultraviolet range and re-emit light in greater wavelengths, usually
in the visible light range. We investigated the fluorescent molecules DMABN, ABN,
MABN, MMD, caffeine, anthracene, salicylamide, and acetyl anthranilic acid through
excited state computational chemistry calculations and observed the excited state
quantum descriptors with a focus on peak absorbance wavelength, excitation energy, and
oscillator strength. Calculations were run with DFT theory TD-B3LYP and a 3-21G basis
set. The excited state that contributes most to the absorption peak of a molecule is shown
by the largest oscillator strength, and the difference between the corresponding excitation
energy and the LUMO was found. This value was compared to the HOMO-LUMO gap to
determine the amount of extra energy required for electrons to move to the excited state.
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Introduction

The phenomenon of fluorescence is a
commonplace one that has been seen in a wide
variety of cases, from minerals to live organisms.
Fluorescence occurs when a molecule absorbs
light (composed of photons) usually in the
ultraviolet range. The reason we are able to see a
different color of emitted light when the
molecules are exposed to ultraviolet light is
because the molecule emits light at a longer
wavelength that is commonly in the visible
spectrum.

Since simple fluorescence is the basis
for all other more complicated phenomenon
including triboluminescence, which is the
emission of light in response to mechanical
stress, we hope to apply computational results
and relationships found in the course of this
research and extrapolate them to larger and more
complex triboluminescent molecules.

We began our investigation with the 4-
(N,N-dimethylamino)benzonitrile (DMABN)
molecule, which is known to exhibit dual
fluorescence at 350nm 475nm. In the gas phase,
only the 350nm absorbance peak can be seen.
This state is the local-excited (LE) state which is
formed from the π to π* orbital transition in the
benzene ring of the molecule. The second state at
475nm is the charge-transfer state and it is due to

the transfer of electrons from the nitrogen to the
CN group.5 In solution, especially polar solvents
such as acetonitrile and methanol, both excited
states are visible; a pilot calculation was done on
DMABN in acetonitrile to see the two
fluorescent peaks but this calculation was not
included in our data for the purpose of
consistency. Afterwards, we proceeded to
performing calculations on related molecules
MMD, 4-aminobenzonitrile (ABN) and N-
methyl-4-aminobenzonitrile (MABN), the latter
two of which are not dual-fluorescent because of
their amino groups with one or no methyl
substituents6 (Figure 1). These and the rest of the
calculations were done in the gas phase because
they do not exhibit the dual fluorescence
property and are therefore not affected by
solvents in this regard. The molecules MMD,
caffeine, anthracene, salicylamide, and acetyl
anthranilic acid were found through more
background research on fluorescence. Acetyl
anthranilic acid (Figure 2) is a known
triboluminescent compound we have produced
and worked with in the laboratory that also
exhibits a green fluorescence under a UV lamp.
This molecule represents the bridge between the
two phenomenons we are attempting to connect
and understand in greater depth.
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Figure 1. DMABN and related molecules6

Figure 2. Acetylanthranilic acid

While researching excited states, we
found the important factors to be the peak
absorbance wavelength shown in the UV-Vis
spectrum, the excitation energy of particular
excited states, and the oscillator frequency (or
oscillator strength). The oscillator strength is the
intensity of the band; also, it is the most likely
electronic transition of the promotion of an
electron in excited states. These excitation
energies will be compared to the highest
occupied molecular orbital (HOMO), the lowest
unoccupied molecular orbital (LUMO), and the
HOMO-LUMO gap energy of the respective
molecules. This gap energy is very important in
chemical reactions because this determines the
excitability of the molecule. Thus, small gaps are
characteristic of easily excited molecules
because only minimal energy needs to be
overcome during electron transitions.

Figure 3. HOMO-LUMO gap and excited energy state

By analyzing these properties and finding
various relationships between them, we looked
for correlations and trends relating to excited
states in fluorescence.

Computational Approach

For DMABN, MABN, ABN, MMD,
and salicylamide, geometry optimizations were
run using the MOPAC program with AM1 basis
set calculations; anthracene and caffeine
geometry optimizations were run using the
MOPAC program with PM3 basis set
calculations. The Gaussian 03 program with
B3LYP theory and 6-31G(d) basis set was used
for geometry optimization of acetyl anthranilic
acid. At first, attempts were made to alter and fix
the position of the methyl groups attached to the
nitrogen in DMABN so that they remained out of
the same spatial plane of the rest of the molecule
by altering the bond angle of the amine nitrogen
connected to the methyl groups by manually
changing the bond angles until they fit a typical
trigonal pyramidal molecular shape. Other
attempts that were made included changing the
bond order of atoms throughout DMABN and
also running coordinate scan calculations rather
than geometry optimizations in order to try and
obtain the correct spatial configuration and
shape. However, several of these calculations
failed due to fixed values in the geometry that
were not compatible in the calculations. When
UV-Vis spectrum calculations were run on the
DMABN molecules that did undergo successful
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geometry optimizations, many of them failed
because the geometry of the molecule was not
compatible for the type of calculation. Finally, it
was determined that a Comprehensive
Mechanics cleanup needed to be performed on
each molecule in the WEBMO molecule editor,
and the dihedral angles of the methyl groups
needed to be fixed through manual configuration
of the Z-matrix, followed by a geometry
optimization. All UV-Vis spectrum calculations
for the in gas phase were run on the Gaussian 03
program with TD (Time-dependent) B3LYP
theory and 3-21G basis set. For these
calculations, it was necessary to manually
change the text in the Preview box to execute the
calculation with TD-B3LYP theory in the model
chemistry. Finally, molecular orbital calculations
for all the geometry optimized molecules were
run using the MOPAC program with PM3 basis
set.

For analysis of excited state quantum
descriptors, raw output data was analyzed in
conjunction with UV-Vis spectra absorption
graphs to determine the excited with the highest
oscillator strength, indicating that it was the
excited state most responsible for the highest
peak on the absorption graph. From the
molecular orbital calculations, the energy
between the HOMO and the LUMO was
calculated by subtracting the energy of the
HOMO from the LUMO. The probable energy
required to reach the excited state most
responsible for the highest peak in the UV-Vis
absorption graph was calculated by subtracting
the energy of the LUMO from the excitation
energy of the excited state being studied.

Results and Discussion

From comparisons of the raw output
data of the excited state quantum descriptors
with the graph of the UV-Vis spectrum graph, it
was determined that the excited state with the
greatest corresponding oscillator strength was
very close to the wavelength of highest intensity
in the absorption peak. Figure 4 shows the UV-
Vis spectra of salicylamide with its highest peak
at 187.24 nm. The collected oscillator strengths
and wavelengths for all ten excited states
calculated for each molecule can be found in
Table 1.

Figure 4. UV-Vis spectra of salicylamide with peak
wavelength of 187.24 nm.

It can be deduced that the oscillator strength
value of the excited state is correlated with the
intensity of the peak at its wavelength. The
relationship between the largest oscillator
strength value and absorption intensity value was
determined to be linear as shown in Figure 5.

Figure 5. A fairly strong linear relationship (r=.9713)
between oscillator strength and the peak intensity was found.

The strong correlation indicated by this set of
data points supports the hypothesis that the
intensity of the absorption peaks in the spectra
are directly proportional to the oscillator strength
of the excited state.

From looking at the largest oscillator
strength values, it was also determined that
higher level excited states, rather than the first
excited state, contributed most to the peak
intensity of the absorption peaks in the UV-Vis
spectrum. Common excited state levels with the
largest oscillator strengths ranged from n=5 to
n=9. All the peak wavelengths ranged from
approximately 172 nm to 224 nm with excitation
energies (EE) that ranged from 5.477 eV to
7.1936 eV. The values for oscillator strengths
ranged from 0.2271 to 1.9189. The HOMO-
LUMO gap energies ranged from 8.176 eV to
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Table 1. Oscillator strengths and wavelength of each 10 excited states of 8 different fluorescent molecules. Wavelength of largest
absorption peak was determined from UV-Vis Spectra

9.273 eV, the EE-LUMO gap energies ranged
from 6.4404 eV to 7.6766 eV, and the EE-
HOMO gap energies ranged from 13.7957 eV to
16.1952 eV. The summary of these results is
shown in Table 2.

These calculation results indicated
various trends and relationships within the data.
First, a trend was found in which the HOMO-
LUMO gap energy for any molecule was always
larger then its corresponding EE-LUMO gap
energies. This shows that the energy gap
required for an electron to cross to reach the next
highest orbital level (HOMO-LUMO gap) is
always larger than the gap of the succeeding
energy orbital jumps that the electron must cross
to reach higher excited states.

Also, several correlations were found
between quantum descriptors. A fairly strong
negative linear relationship was found between
the intensity values of the highest absorption
peak and the HOMO-LUMO gap energy, as
shown in Figure 6.

Figure 6. A moderately strong linear relationship between
intensity of highest absorption peaks and the HOMO-LUMO
energy gap was found (r=-.7702) with regression equation of

y (intensity)= -0.6661x (LUMO-HOMO) + 6.422

Considering the relationship between the
intensity of highest absorption peak and the
oscillator strength of excited state, a fairly strong
relationship between oscillator strengths and
HOMO-LUMO energy gaps was also found
(Fig. 7).

Molecules ES
#

Oscillator
Frequency _ (nm)

E
HOMO

(eV)

E
LUMO

(eV)

E (LUMO-
HOMO) (eV)

EE -
LUMO

(eV)

EE-
HOMO

(eV)

EE-LUMO/
LUMO-HOMO

EE-HOMO/
LUMO-HOMO

Intensity of
highest

absorption peak
DMABN 8 0.5509 174.58 -8.511 -0.375 8.176 7.4769 15.6129 0.91449364 1.909601272 0.7663
Caffeine 9 0.2271 196.19 -9.002 -0.554 8.448 6.8736 15.3216 0.813636364 1.813636364 0.4975

Anthracene 5 1.9189 223.49 -8.248 -0.97 7.278 6.5177 13.7957 0.895534487 1.895534488 1.9536

ABN 7 0.4917 172.35 -8.813 -0.483 8.33 7.6766 16.0066 0.921560624 1.921560624 0.7735

MMD 8 0.5786 183.48 -9.035 -0.572 8.463 7.3294 15.7924 0.866052227 1.866052227 1.1185

MABN 8 0.5202 173.52 -8.619 -0.407 8.212 7.5522 15.7642 0.919654165 1.919654165 0.7708
Acetylanthranilic Acid 6 0.400 214.27 -8.955 -0.654 8.301 6.4404 14.7414 0.77585833 1.77585833 0.6171

Salicylamide 8 0.2908 188.05 -9.602 -0.329 9.273 6.9222 16.1952 0.746489809 1.746489809 0.5934
** ES: Excited State
**EE: Excited State Energy

Table 2. Summary of computational data

Excited States

1 2 3 4 5 6 7 8 9 10
_ of largest
absorbance

DMABN OS 0.0221 0.5197 0.0655 0 0.0017 0 0.0139 0.5509 0.165 0.0047
_ (nm) 265.14 256.44 204.23 198.77 185.89 183.08 177.7 174.58 173.7 166.18 176.29

Caffeine OS 0.098 0.0033 0.005 0.0531 0.024 0.0361 0.0139 0.1633 0.2271 0.0065
  _ (nm) 270.75 262.6 230.78 225.89 212.24 208.68 206.5 200.88 196.19 183.22 200.92
Anthracene OS 0.0657 0.0017 0 0 1.9189 0 0 0.0615 0 0
  _ (nm) 355.37 299.81 260.15 238.67 223.49 216.55 212.41 199.29 199.04 191.9 223.35
ABN OS 0.0232 0.4318 0.1387 0.0105 0 0.0648 0.4917 0.0029 0.0818 0.0059
  _ (nm) 255.6 237.02 195.18 194.65 182.14 176.36 172.35 169.92 168.24 164.63 178.68
MMD OS 0.0773 0.0005 0.0412 0.1875 0.0011 0.005 0.3408 0.5786 0.089 0.0253
  _ (nm) 306.97 262.63 238.42 217.89 190.71 188.14 187.24 183.48 178.64 172.64 186.68
MABN OS 0.0405 0.4777 0.1042 0.0002 0 0.001 0.0385 0.5202 0.1344 0.0058
  _ (nm) 261.17 246.61 199.58 197.33 182.41 180.98 176.18 171.25 171.25 165.27 176.74
Acet.Anth.Acid OS 0.1344 0.0002 0.0003 0.1621 0.0006 0.4 0.08 0.0592 0.0001 0.0012
  _ (nm) 291.98 271.28 245.59 235.26 231.27 214.27 198.66 187.89 183.16 182.64 216.63
Salicylamide OS 0.0103 0.0354 0.0214 0.025 0.0244 0.0079 0.0119 0.2908 0.164 0.0906
  _ (nm) 273.48 250.28 217.51 213.17 210.12 195.6 191.98 188.05 184.06 173.69 187.24
OS: Oscillator Strength _: wavelength
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Figure 7. A fairly strong linear relationship between
oscillator strength and HOMO-LUMO energy gap was found
(r= -.8303) with regression equation of y(oscillator strength)=

-.8239 x(LUMO-HOMO) + 7.469

Another strong linear regression was derived
from plotting the wavelength of the excited state
against its corresponding EE-LUMO gap energy
(Figure 8).

Figure 8. A strong linear relationship between wavelength of
highest absorption and energy gap between excited state and

LUMO was found (r= -.9547) with regression equation of
y(wavelength) = -38.71 x(EE-LUMO) + 465.5

This relationship suggests that the energy
required to promote an electron after the first
jump (of HOMO-LUMO gap) is directly
proportional to the peak absorbance wavelength
of a molecule.

Overall, there were many quantum
descriptor matches between which no correlation
was found. First, no evident correlation was
found between the EE-LUMO gap and the
HOMO-LUMO energy gap. This meant that the
energy required to get to the excited state was
independent of the energy of HOMO-LUMO
gap. Additionally, the ratio of the EE-LUMO
gap energies to the HOMO-LUMO gap energies
was calculated and then plotted against oscillator
strength, wavelength, and intensity of absorption
peaks; none of these plots showed a reasonable
relationship. This result was not a surprise given
the fact that EE-LUMO gap and the HOMO-

LUMO energy gap produced no evident
relationship.

Conclusions

Various properties of excited state
luminescent molecules were calculated including
HOMO, LUMO, HOMO-LUMO gap, oscillator
strength, and peak wavelength and these
quantum descriptors were paired with one
another in order to find correlations. Strong
linear regressions were found for oscillator
strength vs. intensity, LUMO-HOMO gap vs.
intensity, oscillator strength and LUMO-HOMO
gap, and peak wavelength vs. LUMO.

These relationships help to estimate any
of these quantum descriptors when the other is
known, which can be helpful in giving a rough
prediction of these properties of other unknown
luminescent compounds.
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Abstract: This study analyzes the effect of different measured variables on the binding of
artificial sweeteners to the T1R2 and T1R3 glutamate receptors on the tongue. A QSAR analysis
was used to determine which variables contributed to the goodness of the fit of the molecule into
the receptor’s active sites. The artificial sweeteners that were studied were saccharin (Sweet N’
Low), sucralose (Splenda), and aspartame (Equal). Sucrose, or table sugar, was used as a constant
for comparison, and was also included in all of the calculations. Regression equations were used
as a means to measure the significance of the different variables in affecting their sweet index (a
measure of how well the molecule binds to the receptor). A higher sweet index indicates a
tighter, or better, bond to the receptor protein, thus causing a sweeter taste. This study attempted
to find the correct combination of variables that most affected the sweet index by using
regression equations as a quantitative measure.

Key words:  saccharin, sucralose, aspartame, sucrose, QSAR, T1R2, T1R3, sugars, Gaussian, 3-
21G

Introduction
Many factors contribute to the overall sweetness
of a sugar. Sucrose, or table sugar, is the most
common of the sugars used in culinary practices.
However, because of various needs such as
decreased caloric content, a variety of artificial
sweeteners have also come out onto the market.
The most common of these sweeteners are Equal
(aspartame), Splenda (sucralose), and Sweet N’
Low (saccharin). The goal of our project is to
perform a QSAR, or Quantitative Structure-
Activity Relationship, analysis of these
molecules to determine the relationship of their
properties to their values on the sweet index. The
sweet index is a quantitative system that
describes the relative sweetness of various
sugars. This index uses sucrose, or table sugar,
as a base with a sugar index value of 100. This
means, for example, that another sweetener with
a sugar index value of 300 is 3 times as sweet as
sucrose. A QSAR analysis is a quantitative
comparison of chemical structures that correlates
chemical properties with another characteristic.
In our study, we are correlating chemical
properties such as HOMO/LUMO gap, dipole
moment, RHF energy, and electrostatic potential
with the base characteristic, the sugars
quantitative value on the sweet index. The
sweetness of a sugar depends on the “tightness”
of its fit onto the tongue’s sugar receptors. These
receptors, called the T1R2 and T1R3 receptors,

are located at the tip of the tongue and contain
active sites which bond to the sugar molecules,
or glutamates. The better the bond between
receptor and molecule, the sweeter that the body
perceives the sugar to be. Here is a visualization
of the glutamate receptor and the various places
to which sugar molecules can bond. The sugar
molecules are depicted as green, and the protein
receptor is blue and red.

In order for artificial sweeteners to produce the
same effect as natural sugars, they must bond
similarly to the active site within the receptor.
For this reason, we expect the structures of these
molecules to be similar in nature. Another goal
of the project is to compare the structures of
these molecules to investigate similarities and
differences that may affect how they bond to the
receptor, and thus their sweetness.
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Computational Approach
Using the molecular editor builder of WebMO1

on the North Carolina Computational Chemistry
Server2, saccharin (C7H5O3NS), sucralose
(C12H19Cl3O8), aspartame (C14H18N2O5),
and sucrose (C12H22O11) were built. Each was
optimized using Gaussian 033 with a geometry
optimization using the PM3 level of theory.
Following the optimization, each molecule was
run using Gaussian 033 software with a
molecular orbital calculation using HF/3-21G.
Dipole moment, RHF energy, HOMO and
LUMO energy values, HOMO/LUMO gap, and
electrostatic potential minimums and maximums
were computed using these calculations. These
values were entered into an Excel file and
regression analysis was performed on the data in
order to calculate correlation.

Results and Discussion
A structural comparison was performed on the
molecules to determine similarities and
differences between their structures. All of the
molecules contain 6-membered rings. However,
the nature of these rings differs from molecule to
molecule. Saccharin and aspartame both contain
6-membered carbon rings, while sucralose and
sucrose have rings consisting of 5 carbons and
one oxygen. However, this does not appear to
have any significant effect on their sweet index
values.

Regression analysis was performed on all of the
data collected. This data can be found in Tables
1 and 2, located below.

Molecule Sweet Index
RHF
Energy

Dipole
Moment HOMO LUMO

HOMOLUMO
GAP ESP max ESP min

Sucrose 100 1283.43 2.7107 -0.40342 0.18956 0.59298 0.11998 -0.09516
Aspartame 180 -1018 5.8168 -0.27049 0.09733 0.36782 0.12108 -0.12002
Sucralose 600 2430.25 3.1037 -0.41543 0.17077 0.5862 0.13343 -0.08857
Saccharin 300 -939.29 5.9977 -0.39785 0.04295 0.4408 0.11458 -0.08965

Table 1. Calculated Values of Artificial Sweeteners and Sucrose
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Table 2. Regression Analysis on Calculated Data

These values show which variables are
significant in determining the fit of the
molecules into the receptor, and thus their
sweetness. R2 values, found in Table 2 along
with the regression equations of each
relationship, are a measure of whether or not the
relationship is significant and can be represented
linearly. This also measures to what extent the
variables being graphed correlate.

Relationship A has an R2 value of 0.28993. This
shows that the RHF Energy of the molecule
alone does not affect the fit of the molecule into
the receptor.

Relationship B has an R2 value of 0.037186. This
means that there is virtually no correlation
between the dipole moment and the sweet index
of the molecule. This, however, does not
necessarily mean that this variable, or any others

that do not have a significant correlation alone,
do not have a strong correlation when combined
with other variables.

Relationship C has an R2 value of 0.994039.
While dipole moment and RHF energy taken
alone had no effect on the sweet index, together
they do have a significant correlation with sweet
index.

Relationship D has an R2 value of 0.179209. The
HOMO value of the molecules does not appear
to have any correlation with the sweet index of
the molecule.

Relationship E has an R2 value of 0.008642.
Alone, the LUMO value of the molecules has
virtually no correlation with their sweet index.

Relationship F has an R2 value of 0.099598.
Again, this means that the HOMO/LUMO gap of

Relationship X Y R2 Equation

A RHF Energy
Sweet
Index 0.28993 y= .069343x +264.551

B Dipole Moment
Sweet
Index 0.037186 y= -24.2912x+402.0568

C
RHF Energy (x1), Dipole
Moment (x2)

Sweet
Index 0.994039 y= .343176x1+287.9481x2-1124.74

D HOMO
Sweet
Index 0.179209 y= -1366.64x-213.114

E LUMO
Sweet
Index 0.008642 y= 301.0365x+257.3245

F HOMO/LUMO Gap
Sweet
Index 0.099598 y= 623.12x-14.6595

G
HOMO (x1), LUMO (x2),
HOMO/LUMO Gap (x3)

Sweet
Index 0.182188 y= 0x1-1618.51x2+1430.516x3-213.334

H

RHF Energy (x1), Dipole
Moment (x2), HOMO (x3),
LUMO (x4),
HOMO/LUMO Gap (x5)

Sweet
Index 1 y= .334094x1+287.3202x2-327.724x3+0x4+0x5-1239.83

I ESP max
Sweet
Index 0.5677 y= 20745.57x-2241.51

J ESP min
Sweet
Index 0.255175 y= 7520.157x+1034.607

K
ESP max (x1), ESP min
(x2)

Sweet
Index 0.712778 y= 18909.05x1+5756.638x2-1450.8

L

RHF Energy (x1), Dipole
Moment (x2), HOMO (x3),
LUMO (x4),
HOMO/LUMO Gap (x5),
ESP max (x6), ESP min
(x7)

Sweet
Index 1

y= .334094x1+287.3202x2-327.724x3+0x4+0x5+0x6+0x7-
1239.83
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each molecule alone does not affect the way that
the molecule fits into the receptor protein.

Relationship G has an R2 value of 0.182188. The
HOMO, LUMO, and HOMO/LUMO gap values
of the molecules, when combined, still do not
produce a significant correlation with the sweet
index.

Relationship H has an R2 value of 1.0. This
indicates a perfect correlation between the
combinations of the variables RHF Energy,
Dipole Moment, HOMO, LUMO, and
HOMO/LUMO Gap.  However, in the equation,
LUMO and HOMO/LUMO Gap have a

coefficient of zero, meaning that they have no
significance in the correlation between these
values and sweet index.

Relationship I has an R2 value of 0.5677. This
reveals a slight correlation between the ESP max
and the sweet index. However, this could be
simply a result of chance rather than an actual
relationship between these two variables.

Relationship J has an R2 value of 0.255175. This
indicates no real correlation between ESP min
and the sweet index of the molecules.

Relationship K has an R2 value of 0.712778.
When combined, ESP max and ESP min have a
slight correlation with sweet index.

Relationship L has an R2 value of 1.0. This again
indicates a perfect correlation between all of the
variables calculated. However, the regression
equation for relationship L is the same as
relationship H. ESP max and ESP min, when
added to the variables correlated to relationship
H, have no effect on the sweet index of the
molecules. The only values that have any effect
on the sweet index are RHF Energy, Dipole
Moment, and HOMO. All other variables have
no effect.

The only variables measured that affect the
binding of the molecule to the sweet receptor on
the tongue are the RHF energy, the Dipole
moment, and the highest occupied molecular
orbital of the molecule. The coefficient for RHF
energy in the regression equation is .334094.
This means that there is a positive correlation
between RHF energy and the sweet index. The
coefficient for dipole moment is 287.3202.
Again, this indicates a positive correlation
between dipole moment and sweet index value.

There is a negative coefficient associated with
the HOMO values of the molecules. This value
is -327.724.

Conclusions
The different values that were found to be
associated with each of the significant variables
can help to explain how the receptor might work
in the body and what kind of molecules that it is
most likely to bind to.

Because the correlation between RHF energy
and sweet index is positive, we can assume that
as the RHF energy goes up, the sweet index
increases, which indicates a better bond with the
receptor. Therefore, molecules with higher RHF
energies are more likely to bond well with the
receptor and taste sweeter.

Dipole moment also has a positive correlation
with sweet index. The higher the dipole moment,
the more polar a molecule is. This could mean
that the receptor is more likely to accept polar
molecules into its active site. The receptor’s
active sites may be home to atoms that have very
high electron affinities that attract the negatively
charged end of a polar molecule.

HOMO values, however, have a negative
correlation. The smaller the HOMO energy value
of a molecule, the more likely it is to react. This
means that if the electrons in the highest
occupied molecular orbital of the atom are
loosely attracted to their nuclei, they are more
likely to react. This makes sense because in order
for the molecule to bind with the receptor, the
electrons in the highest orbital must be very
reactive. The lower the HOMO value of the
molecule, the more reactive it is, and therefore
the more likely it is to bind with the receptor and
cause the perception of a sweet taste.

The other variables might not have been
significant simply because they do not have any
major effect on the binding of the molecule to
this specific receptor.

These conclusions were based upon our
computational methods and the data collected
and not verified by any data on the receptor
itself.
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Abstract:  Studies on Silicon 100 have shown that the adsorption of methanol
vapors on Silicon 100 or the production of methanol vapors in silica-sol gel
matrices increases the amount of methanol that can be produced. These studies
indicate that there is promise for Silicon 100 to be incorporated into a
mechanism to enhance the efficiency of Direct Methanol Fuel Cells. In this
study, an attempt was made to geometry optimize adsorbed methanol vapors on
fluorinated surfaces of Silicon 100 to compare experimental data with
experimental data. It was found that the geometry optimization portion of the
calculations was more difficult than thought to be and only one quick, dry
optimization using Tinker software was successful. The other geometry
optimizations did not succeed, but the Tinker geometry optimization indicates
that the molecule could be potentially geometry optimized if more premature
optimizations using redundant checkpoint files in the calculations are performed.

Key words:  Silicon 100, Geometry Optimization, 3-21G, 6-31G(d), redundant, checkpoint file

Introduction

In research, alternative energy sources have been
a primary focus for many researchers who wish
to resolve the petroleum crisis. Although there is
still time for an abundant or abundance of
resources to be found, researchers know that if
the problem is not resolved within the next few
decades, the planet could have problems with
sustaining the current comfortable standard of
living that many nations have.

One form of energy that has been valuable in
many portable devices, machines, households,
and other materials is electricity. The production
of electricity can be produced through various
mechanisms, but one particular semiconductor
used in many electronic devices is silicon.
Silicon technology has proven to be effective for
small portable electrical devices, such as CD
players, radios, and laptop batteries.

A specific, potential application using silicon is
the synthesis of Silicon-100 (Si-100) gel to
adsorb methanol vapors. There have been
experimental studies that dealt with the
adsorption of methanol vapors on fluorinated
silicon surfaces and the production of methanol
in silica-sol gel matrices. These experiments
have demonstrated that methanol production is
increased when produced in the porous areas of

Si-100. Thus, the direct application would be to
find a way to incorporate methanol production in
Si-100 in Direct Methanol Fuel Cells (DMFCs).
By doing so, DMFCs would produce more
methanol vapors to generate more current, which
could be used to power vehicles or electronic
devices with longer sustained electricity power.

The use of liquid methanol poses two
disadvantages in a Direct Methanol Fuel Cell.
One of which pertains to the flammability of the
substance and the other of which deals with it
being less efficient than methanol in the vapor
state. However, utilizing methanol in its vapor
state would require the use of a mechanism that
would be able to store and release the vapor in
the fuel cell. Although there have not been many
direct studies for this application in fuel cells,
silica gel is a substance that has the ability to
absorb methanol. Since silica gel is a non-
flammable polymer, it also reduces the
flammability issue with methanol fuel cells.1

Silica gel is a porous, granular amorphous form
of silica (SiO2) and is synthesized from sodium
silicate.5
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Figure 1: Silica Gel5

The gel itself is not actually a gel, but a solid and
the gel comes in a variety of names depending on
its mesh size. The mesh size difference between
various silica gels distinguishes between the
differences in the surface area and density of the
particle and indicates the type of mesh screen
filter the silica gel can be filtered through. Due to
the high surface area of silica gel and its many
tiny pores, silica gel can adsorb water readily,
which is done when preparing silica gel to
absorb methanol vapors.1 This adsorption to
silica gel is due to the van der Waals interactions
between silica gel and other molecules and
capillary condensation,
the ability for pores in the silica gel to be filled
with liquid that separates from the gas phase.3

Due to silicon’s prevalent role as a
semiconductor, the surface phases of silicon have
been a focus for many researchers for the past
thirty years. The surface phases of silicon
include the thin layers situated near the surface
of silicon that are in equilibrium with crystalline
silicon.4 One such study that has been conducted
involving the surface of silica gel involves the
adsorption of methanol vapors on Si-100 silica
gel that had different concentrations of fluorine
ions bonded to the surface. In this study by R.
Nasuto from the Department of Physical
Chemistry of Solid Surfaces in 2000, it was seen
that as the concentration of bonded fluoride ions
increased, the surface of the silica gel began to
deactivate and absorbed less methanol vapor. In
order to prepare the silica gel for fluorination, the
surface of the silica gel was hydroxylated by
saturating it with water vapor. Afterwards, the
hydroxyl groups were removed by exposing the
gel to fluorine ions. Once fluorinated, the
adsorbents of silica gel were placed in columns
that were exposed to certain amounts of
methanol vapors until equilibrium was
established between the adsorbed methanol and
the silica gel at pressures of 10-3 millibars. By

varying the fluorine concentrations, it was
observed that the fluoride ions have the ability to
form complexes with multiple hydroxyl groups
on the silica gel’s surface, which causes the
pores of the gel to be blocked due to the high
electronegative charges. Thus, methanol vapor
could not be adsorbed in higher amounts.4

Although the mentioned idea of incorporating Si-
100 in DMFCs seems reasonable, due to limited
resources and time, this study did not focus on
engineering a mechanism to increase methanol
production in DMFCs via Si-100 gel.

Instead, this study attempts to analyze the
structural properties of adsorbed methanol vapor
on fluorinated Si-100 through computational
methods. Understanding the structural
components and properties of a molecule is just
as important as knowing that a molecule can be
used in practical applications, such as DMFCs.
By attempting to understand the structural
properties of adsorbed methanol vapor on
fluorinated Si-100, certain similar phenomena
and/or properties can be looked for in other
molecules to find more reliable or cheaper
molecules to use as scientists attempt to produce
more energy sources.

In computational chemistry, computing
resources and compute time are very valuable
and limited to researchers. Due to the complexity
of the Si-100 molecule, all of the proposed
methods could not be carried out within the
allotted time span. Thus, the focus of this study
in terms of understanding the structural
properties of Si-100 involved attempting to
geometry optimize fluorinated Si-100 surfaces
with methanol vapors adsorbed to the surface..

When studying molecules computationally, one
of the first calculations performed on the
molecule is the geometry optimization. A
geometry optimization calculation done using a
specific basis set and theory level is done to
ensure that the molecule’s quantum descriptors
are optimal to place the molecule is at its lowest,
most stable energy state. Although a geometry
optimization does not appear to be a complex
calculation, certain molecules can be very
difficult to optimize due to the structure of the
molecule.10 In the event that a molecule is too
difficult to geometry optimize using standard
protocol, other types of geometry optimizations
must be used. Some of these optimizations
include natural, redundant, and delocalized
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internal coordinate optimizations. In the present
study, a redundant optimization was required on
the adsorption of methanol vapors on the
fluorinated Si-100 gel.12 This type of
optimization will be further explained in the
results and discussions section. Finally, when
dealing with geometry optimizations, if all of the
aforementioned methods for optimizing a
molecule do not succeed, single point energy
scans are performed instead. In a single point
energy scan, the molecule has other calculations
(i.e. molecular energy, molecular orbital,
transition state, etc) done on it at a specific
molecular geometry. Single point energy scans
are done when a researcher would like to study
specific aspects of the molecule, but does not
have enough time to study these aspects when
the molecule is at its lowest, most stable energy
state.

Computational Approach

On the North Carolina High School
Computational Chemistry Server8, the molecular
editor builder of WebMO7 was used to build
adsorbed methanol vapors on fluorinated Si-100.

After building the molecule, the molecules were
optimized using the “geometry cleanup”
molecular mechanics package found in the
WebMO molecular editor. With the adsorbed
methanol vapors to the fluorinated Si-100
surface attempts to geometry optimize the
molecule were made using Tinker, MOPAC, and
Gaussian software using Hartree-Fock, B3LYP,
AM1, and PM3 levels of theory along with 3-
21G, 3-21G(d), and 6-31G(d) basis set types.

Results and Discussion

When performing calculations on molecules,
there are two methods that are usually used to
optimize molecules. These two methods are ab
initio and semi-empirical calculations. Ab initio
calculations are completely theory based, but
require must computing time and resources.
Since these two factors played a major key in the
computational analysis, this study used semi-
empirical calculations to geometry optimize the
fluorinated Si-100 gel with methanol vapors
adsorbed. With semi-empirical methods, half of
the calculations are theory based and half of the
calculations are based from empirically derived
data (experimental data).

Due to the complex structure of methanol vapors
adsorbed to fluorinated Si-100 gel along with
few experimental studies on the structure, it was
found that geometry optimizations using Tinker,
MOPAC, and Gaussian at 3-21G, 3-21G(d), 6-
31G(d) basis sets and PM3, AM1, Hartree Fock,
and B3LYP levels of theory would not succeed
in optimizing the molecule. Thus, an attempt to
perform redundant checkpoint optimizations was
done on the structure. The idea behind the
redundant checkpoint optimization involves the
notion that the molecule is able to be optimized
to a certain extent during each calculation and
that the calculation fails when it cannot interpret
certain aspects of the molecule. For instance, a
common error that caused the geometry
optimization to fail in the adsorbed methanol
vapor on fluorinated Si-100 structure was the Z-
matrix error. In this error, the software could not
interpret the internal coordinates for the
structure, which means it could not accurately
determine the build of the structure.

Thus, with redundant checkpoint optimizations,
once a geometry optimization failed, the failed
job was used as a starting point to continue the
geometry optimization from the point at which
the previous job did not succeed. In order to run
a checkpoint file, the save checkpoint file tab
must be checked and the proper checkpoint file
must be chosen when using the geometry
optimization.

The idea of redundant checkpoint optimizations
can be thought of as premature washing before
actual washing. With this concept in mind,
attempts are made to clean the molecule with
little soap and more water to get the molecule
somewhat stable. After the molecule is a bit
stable, more soap with water is used in order to
get the molecule’s quantum descriptors to be
optimal for the molecule’s lowest, most stable
energy state.

Although none of the jobs were able to
successfully geometry optimize except for one, it
is interesting to note that as more optimizations
were done and carried out, the longer the jobs
took before they failed. With this increase in
time before the jobs failed (unless the jobs had to
be ended quickly due to the limited computing
resources and time available), there is an
indication that the molecule was becoming more
optimized as more washings occurred. One job
that has used the most computing time on the
North Carolina Chemistry Server is job 14630, in
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which the geometry optimization of the molecule
took 17 hours and 49 minutes before it failed.

The one job that did geometry optimize used a
molecular mechanics software known as Tinker.
This software does a quick, dry optimization on
molecules and does not output many parameters
that can be used for interpretation or analysis.
Instead, the success of this geometry
optimization signifies that if this study were to
continue, it would be possible to eventually
geometry optimize adsorbed methanol vapors on
fluorinated Si-100 surfaces with more advanced
levels of theory and basis set types for structural
analysis of the structure. The geometry
optimization using the Tinker software is shown
below.

Figure 2: Adsorbed Methanol Vapors on
Fluorinated Silicon 100 Surface Structure

Conclusions

The original intent of this computational study
was to analyze the quantum descriptors of the
Silicon 100 molecule to compare computational
data with experimental data. However, it was
found that the computational challenge in itself
was to successfully geometry optimize the
molecule. The adsorbed methanol vapor on
fluorinated silicon 100 surface was successfully
geometry optimized using Tinker, but was
unsuccessful using all other software along with
varying degrees of basis set types and levels of
theory. Although the geometry optimizations
were unsuccessful, the idea behind performing
redundant checkpoint files appears to be the
route that should be taken to successfully
geometry optimize the molecule. This can be
noted from the successful Tinker geometry
optimization, which indicates that many more

premature optimizations are needed until the
molecule can be optimized to its lowest, energy
state. From this research, it has been seen that
computational studies dealing with complex
structures using semi-empirical methods are
quite challenging, even with only a geometry
optimization and no other calculation available
to interpret the molecule.
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Potential Energy Scans of 1,1-Dichloroethene
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Abstract: A computational examination of the potential energy of 1,1-
dichloroethene (trans) was undertaken to compare the output differences
between ab initio, Hartree-Fock 3-21G, and two semi-empirical methods,
AM1 and PM3.  The geometric optimization of the molecule, used in all
potential energy scans, was computed at the Hartree-Fock level of theory
using a 6-31G(d) basis set.  We found the AM1 semi-empirical method was
closer to the ab initio results than the PM3 semi-empirical method, but both
semi-empirical methods were very inaccurate in comparison to the ab initio
method with percent errors ranging from 99.87589% to 161.37303%.
Key words: potential energy scan; AM1; PM3;

Introduction
The purpose of our investigation was to
compare the AM1 and PM3 semi-
empirical methods for potential energy
scans.  We sought to find which semi-
empirical method was close to the ab
initio method because computational
time and CPU power needed to use
semi-empirical method is significantly
less, which is extremely useful in the
study of larger molecules.
The two semi-empirical methods that we
used, AM1 and PM3, are both based on
the Neglect of Differential Diatomic
Overlap integral approximation.  The
only differences between the PM3 and
AM1 methods are: 1) PM3 employs two
Gaussian functions for the core repulsion
functions, instead of the variable number
used by AM1; 2) the numerical values of
the parameters are different in that AM1
takes some of the parameter values from

spectroscopic measures while PM3 treats
them as values that can be optimized.
The potential energy of a molecule is the
single point energy of a molecule in a
specific molecular geometry.  Often
known as molecular energies, single
point energies in our study are given in
units of Hartrees, which can be
converted to many other common energy
units.  A potential energy scan calculates
the single point energy at multiple angles
and bond lengths as set by the user,
returning values of the molecular energy
of the molecule in each of the
geometries.  Usually these values are
compiled into a graph for the user to
observe the change in energy, allowing
the user to find the global minimum or
the angle or bond length the molecule is
most likely naturally occur in.

Computational Methods

All the ab initio and semi-empirical
calculations, geometric optimization and
potential energy scan, were conducted
using Gaussian 03 suite of programs.
The 1,1-dichloroethene was

geometrically optimized using a 6-
31G(d) basis set at the HF level of
theory.  Following the optimization, we
attempted to conduct potential energy
scans of each dihedral angle in the
molecule using HF/3-21G.  Using Figure
1.0, the potential energy scan of the 6-1-
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2-3 dihedral angle failed due to a new
curvilinear step not converging.  Next,
the 4-1-2-3 dihedral angle potential
energy scan also failed due to a
convergence failure.  Lastly, the 5-1-2-3
dihedral angle ran complete with a run
time of 00:02:59 with thirty-degree
angle increments for a total of twelve
geometries.  Because of our success with
this dihedral angle, we decided to use it
in our comparison of ab initio and semi-
empirical methods.  We ran potential
energy scans of the 5-1-2-3 using AM1
and PM3 semi-empirical methods with
run times of 00:01:45 and 00:01:49
respectively, again with thirty-degree
angle increments.

Results and Discussion

We took our ab initio results as the base
for our comparison of the semi-empirical
methods because ab initio methods are
more accurate due to their pure
mathematical approach.  All the methods
found 180 degrees as the lowest
geometry with the lowest molecular
energy, which means that configuration
is the naturally occurring configuration.
The ab initio run returned molecular
energy results ranging from -991.01559

to -989.6922 Hartrees as shown in
Figure 1.1 below.

Energy Level vs. Angles at Increments of 30 Degrees (Ab Initio)
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Energy Level vs. Angles at Increments of 30 Degrees (AM1)
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Figure 1.2

The AM1 run returned molecular energy
results ranging from -1.22991862 to
559.72592381 Hartrees as shown in
Figure 1.2 above.  Additionally, the PM3
run returned molecular energy results
ranging from 5.30873037 to 607.4041
Hartrees as shown in Figure 1.3 below.
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Energy Level vs. Angles at Increments of 30 Degrees (AM1)
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Figure 1.3

All of these graphs share the same
parabolic shape with a global minimum
at 180 degrees, indicating that every

method found the lowest energy at this
geometry.  However, in comparison to
the ab initio, the semi-empirical methods
produced significantly larger energies.
A chart showing the molecular energy
values for each angle along with the
percent error in comparison to the ab
initio is shown below in Table 1.0.  It
should be noted that percent errors get
significantly less the as the angles get
closer to 180 degrees due to the overall
scale of each method.  This can be
viewed in the graph in Figure 1.4, which
superimposes Figures 1.1 through 1.3 on
the same graph and scale.
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Table 1.0
Conclusion From this investigation, we determined

that AM1 is a closer semi-empirical

Angle Ab Initio AM1 AM1-% diff PM3 PM3-% diff
0 -989.6922 559.7259238 156.55556 607.4041 161.37303

29.99962 -990.42316 287.9076337 129.06915 291.5033 129.43219
59.99949 -990.6812 157.1472041 115.86254 151.5373 115.29627
89.99958 -990.85245 73.7951172 107.44764 74.1779 107.48627
119.9997 -990.95185 28.30067845 102.85591 34.81423 103.51321
149.9999 -991.0003 5.74798702 100.58002 12.32429 101.24362

180 -991.01559 -1.22991862 99.875893 5.30873 100.53569
209.9999 -991.0003 5.74798702 100.58002 12.32429 101.24362
239.9997 -990.95185 28.30067845 102.85591 34.80795 103.51258
269.9996 -990.85247 73.78884211 107.44701 74.1779 107.48627
299.9995 -990.6812 159.4815394 116.09817 150.4391 115.18542
329.9996 -990.42326 287.8699831 129.06535 291.4656 129.42839
359.9998 -989.69229 559.7196487 156.55492 607.3978 161.37239
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approximation to the HF/3-21G level of
theory for potential energy scans of this
molecule, 1,1-dichloroethene (trans).
Based on this data, we would continue
this investigation with molecules of a
similar structure in increasing size to
determine whether if AM1 is more
accurate for all of these molecules.
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Abstract:  There are many similarities between the illegal drug
Methamphetamine and legal nasal decongestant medicine Pseudoephedrine.  If
Pseudoephedrine were to become easily accessible, as it was when the medicine
called Sudafed was made OTC, it would be easy to determine a recipe to create
Meth.  The goal of this project was to determine exactly how similar these drugs
are and why it was so easy for drug dealers to create Meth.  In addition to this,
the replacement for Sudafed, Phenylephrine, was also studied.  Our results
showed that the structural similarities of Pseudoephedrine and
Methamphetamine were shockingly similar.  The bond angles of the two drugs
varied by at most by 2.949 degrees at critical points connecting the common
benzene ring.  However, the replacement Phenylephrine has very different bond
angles and therefore structures.  The energies of all of the drugs were also
determined and evaluated.  It was found the HOMO and LUMO energies of
Sudafed and Meth were most similar.  This implies that the reactivity of Sudafed
and Meth will be very similar because reactions will occur with the HOMO and
LUMO’s in order to stabilize the compound.  Phenylephrine’s HOMO and
LUMO energies are similar, yet are not as close to Meth as Sudafed’s are.  This
is reasonable due to the fact that Phenylephrine must be similar to
Pseudoephedrine in order to have the same effects in the body.  It appears to be
that the very similar structures and energies of Pseudoephedrine and
Methamphetamine are the main reasons why it was so easy for the common
citizen to create Meth from Sudafed.

Key words:  pseudoephedrine, phenylephrine, methamphetamine, bond angle, dihedral angle, HOMO
energy, LUMO energy, electron to electron repulsion, molecular orbitals

Introduction

It is a well known fact that the extremely harmful
and illegal drug Methamphetamine - also known
as Crystal Meth when it is produced in its
crystallized form - can be manufactured from
using a common nasal decongestant, Sudafed,
and other household products.  It is the main
ingredient in Sudafed – Pseudoephedrine - that
makes this reaction possible.  The other reactants
used in this reaction are used only to slightly
alter the Pseudo ephedrine’s structure and
properties.

How exactly the Meth was made is not
important; why it was possible to make Meth is
important in order to determine a replacement
drug to Pseudoephedrine.  Determining this
replacement medicinal drug that will not be able

to be made into Methamphetamine can be done
safely using Computational Software such as the
North Carolina High School Computational
Chemistry Server1.  Unfortunately, a replacement
drug is already being produced and sold.  This
drug is called Phenylephrine.  However, there
have been some reports from credible sources
such as the British Journal of Clinical
Pharmacology and the British Medical Journal2

that Phenylephrine is an illogical response to the
Meth issue because Phenylephrine is very
ineffective when compared to Pseudoephedrine.

Therefore, in this research, the three drugs
mentioned – Pseudoephedrine,
Methamphetamine, and Phenylephrine -were
studied on the basis of structure and various
important energies.  From the energies of the
drugs one was able to determine its reactivity.
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The goal of this research was to determine why
Meth was so easily manufactured in terms of
similarities between Methamphetamine and
Pseudoephedrine and to identify main locations
for further studies to look at in order to
determine more effective replacement drugs.

Computational Approach

Before the molecules were ever run, one had to
determine the known arrangement of the atoms
in the drugs; these were found on the very useful
database searching website ChemFinder.com3.
After the structures were found they were then
put into the molecular editor builder of WebMO4

on the North Carolina High School
Computational Chemistry Server.  All of the
molecules were modified using a Comprehensive
Clean-Up in the WebMO builder.

Once ready for Geometry Optimizations, which
theory and basis sets to use were being debated.
The argument was to use a platform that ran
molecules to give the most reliable data, yet it
still ran the job in a reasonable amount of time so
that the many other researchers could be able to
run their jobs as well.  Knowing that the
Geometry Optimization was the longest
calculation that needed to be run we decided to
run this one early to determine the best method
to use.  The main focus of our research,
Pseudoephedrine was optimized using Gaussian5

with a 6-31G (d) basis set.  We did not expect
this run to be short by any means, but knowing
that most of our research dealt with structure we
wanted to get the best results and decided to
experiment with this run.  As expected, the run
time was enormously large at 1 hour 22 minutes
and 9 seconds.  Where this time would not be so
bad if the entire server was dedicated to our
project, we had to be reasonable with our run
times.  We decided that it would be best to
optimize everything using the MOPAC6 software
with a PM3 basis set.  The results of this
calculation would not be as accurate as the
previous job, yet it would still give reasonable
values within a reasonable amount of CPU
Usage Time.  The fact that there were still other
calculations to run on the molecules was also
taken into consideration.

The next issue that arose was to determine which
calculations will put out the results that we
desired.  It was determined that in order to
successfully compare the molecules that
Molecular Orbitals must be observed.  This is

because molecular orbitals are where reactions
will occur and ultimately can determine the
behavior the molecule itself.  So it was decided
that the job we should run would be a Molecular
Orbitals job.  An ab initio method was then
determined to be the best approach because it
would give the most accurate results when
compared to other theories.  Therefore Gaussian
was used to run the Molecular Orbital
Calculations.  To determine the basis set that
needed to be run we decided to experiment
again. Using the main focus of our research,
Pseudoephedrine, we used two different model
chemistries were used to determine molecular
orbitals; PM3//HF/6-31G (d), and PM3//HF/6-
31G (d,p). Although the diffuse and doubly
polarized split valence basis set did produce
better results, its run time was 19 minutes and 47
seconds.  However, the polarized split valence
basis set only took 1 minute and 32 seconds.
Reasoning that the 6-31G (d) basis set will still
give respectable results that are publishable, and
that there were still many more jobs to be run –
both on our research and other groups – it was
determined that we would use the 6-31G (d)
basis set.  All three Molecular Orbital
calculations were run using the following model
chemistry: PM3//HF/6-31G (d).

Finally it was decided that a Natural Bond
Orbitals calculation needed to be run.  This was
because we wanted to see how strongly the
bonding orbitals were holding on in each of the
molecules to determine weak points that could be
isolated to create methamphetamine or weak
points needed to react in order to be an effective
nasal decongestant.  Given the knowledge that
the Molecular Orbitals calculations worked best
under the 6-31G (d) basis set, it was used again
in this calculation.  All three molecules were run
for Natural Bond Orbital calculations using the
following model chemistry: PM3//HF/6-31G (d).

It came to our attention after running all of our
calculations that a Natural Bond Orbital
calculation will produce the same results as a
Molecular Orbital calculation with some extra
data included.  Therefore all of our data was
collected from the Natural Bond Orbitals under
the idea that all the data in the other calculations
were included in the data we were observing.  A
table of the CPU usage times and all of the
calculations can be seen in Figure 1.
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Figure 1

Results and Discussion

Basic Structures

The data produced suggested that the similarities
between methamphetamine and pseudoephedrine
were extremely great in regards to their structural
geometries and arrangements (all visual
references can be seen in figures 2, 3 and 4
which are the molecules methamphetamine,
phenylephrine, and pseudoephedrine
respectively).

Methamphetamine and Pseudoephedrine were
the most similar in structures.  Both molecules
included a benzene ring and a “tail” which
included one nitrogen atom and four other
carbon atoms. The major difference in the two
molecules was that the pseudoephedrine
contained one oxygen atom and the
methamphetamine did not; because of this the
“tails” were also different with the
pseudoephedrine “tail” circling around the
benzene ring and the methamphetamine “tail”
being more stretched out. The differences in the
geometries can be explained because of the lone
pairs on the oxygen atom on the
pseudoephedrine; it is assumed that the electrons
of the carbons on the “tail” repel the lone pairs
creating the different bond angles on the
pseudoephedrine.

On the contrary, phenylephrine has a fairly linear
geometry as well as a considerably less number
of carbon atoms compared to the other two
molecules. It also has two oxygen atoms whereas
pseudoephedrine only has one and
methamphetamine does not have any. The
pseudoephedrine and methamphetamine have a
distinct bond angle that give it more of a
“corner” shape; yet, the phenylephrine does not
have this characteristic.  This is one possible
reason why phenylephrine can not be made into
methamphetamine, a considerable amount of

elements would have to be added and removed in
order to get the arrangement of the
methamphetamine molecule.

Bond Angles

The bond angle connecting the three carbons at
beginning of the “tail” of the pseudoephedrine
with one of the carbons in the benzene ring was
111.344 degrees. This bond angle differs by
2.949 degrees from the methamphetamine bond
angle that is also the angle connecting the “tail”
to the benzene ring, which is 114.293 degrees.
These close bond angles at the critical point
connecting the “tail” to the benzene indicate that
the structures are extremely similar. It should be
noted that due to the oxygen’s lone pairs the
dihedral angle between the “tail” and the ring
will adjust it.  For pseudoephedrine, the dihedral
angle between the connecting carbons to the
benzene ring and the only nitrogen is 58.625
degrees.  The dihedral angle for
methamphetamine in the same respective
location as previously mentioned is -57.239.
These dihedral angles are almost exactly the
same in terms of magnitude; however the signs
attached to them are opposite indicating that the
“tail” as a separate entity itself is simply rotated
around the ring to “tail” bond due to the electron
to electron repulsions in pseudoephedrine.
Because there are no oxygen atoms in
methamphetamine, the torsion of the “tail” does
not exist.  A PES scan was considered, yet due to
the fact that the contortions of the molecules
were because we were in fact observing two
separate molecules themselves, NOT
CONFORMERS of a single molecule, the jobs
already ran were considered suitable for this
situation.

Phenylephrine however is completely different
than the other two molecules.  The dihedral angle
connecting the nitrogen and the benzene ring is
149.459 degrees.  This is nearly linear.  This
extreme difference can be explained due to the
extra oxygen and – more so – the significant
decrease in number of carbon atoms located on
the “tail”.  One specific characteristic that can be
observed between pseudoephedrine and
phenylephrine is the bond angles between the
benzene ring, the connecting carbon and the
oxygen atom.  This characteristic can not be
observed on methamphetamine because there are
no oxygen atoms in methamphetamine.
However, the bond angle mentioned above on
pseudoephedrine is 111.155 degrees.  The
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corresponding bond angle on phenylephrine is
110.974 degrees.  These angles are extremely
close.  The other likeness of phenylephrine – the
carbon to nitrogen to carbon angle - can be
extended to methamphetamine as well as
pseudoephedrine.  Phenylephrine’s carbon to
nitrogen to carbon bond angle is 113.895 degrees
which is extremely close to pseudo ephedrine’s
112.718 degrees and methamphetamine’s
114.293 degrees.  The balance of extreme
differences and similarities of phenylephrine is
logical due to the fact that phenylephrine must
complete the same function as pseudoephedrine
– and therefore must be similar in some ways -
and must be different enough from
pseudoephedrine in order to fix the
methamphetamine issue.

Bond Lengths & Strengths

One method to compare the relative bond
strengths within molecules is to observe the bond
lengths.  The shorter the length of the bond, the
stronger the bond itself is.  The bonds that were
chosen to be observed were the nitrogen to the
terminal carbon bond, the benzene to carbon
bond, (on pseudoephedrine and phenylephrine)
the carbon atom to oxygen bond, and finally (on
phenylephrine alone) the benzene ring to oxygen
atom bond.

Firstly, the bond between the benzene ring and
the carbon should be observed.  On
pseudoephedrine the bond length is 1.515
Angstroms; on methamphetamine the bond
length is 1.495 Angstroms; and on phenylephrine
the bond length is 1.520 Angstroms.  Although
all three bonds are about the same length and
therefore strength, the bond on
methamphetamine appears to be slightly stronger
compared to the other two molecules.  This is
largely due to the fact that methamphetamine has
less electron to electron repulsion that is present
in the other molecules due to their extra oxygen
atom(s).

The next bond to be observed is the nitrogen to
the terminal carbon atom.  This location was
thought to have interestingly varying strengths;
however, the bonds were surprisingly similar.
Methamphetamine’s nitrogen to carbon bond
length is 1.491 Angstroms; phenylephrine’s
corresponding bond length is 1.484 Angstroms;
and finally pseudo ephedrine’s bond length is
1.500 Angstroms.  These bond lengths are
remarkably alike and therefore it is reasonable to

assume that the bond strengths are about the
same in each molecule at this location.

The next bond lengths to be observed can only
be observed in pseudoephedrine and
phenylephrine because they involve the oxygen
atoms.  The only oxygen atom that
pseudoephedrine contains is bonded to the
carbon that bonds to the benzene ring.  The bond
length of the carbon to oxygen is 1.418
Angstroms; the bond length of the corresponding
carbon and oxygen in phenylephrine is 1.417
Angstroms.  The exactness of the similar bond
strength can be used to speculate that this
particular oxygen is very important in the
function of the molecules as a nasal
decongestant; therefore it should be considered
that any replacement drug must have this oxygen
in place.

Phenylephrine, however, has yet another oxygen
atom.  This oxygen atom is connected directly to
the benzene ring.  The bond length of that bond
is 1.368 Angstroms.  That is the closet and
therefore the strongest bond yet.  It is reasonable
to assume that this bond is not able to aid in the
decongestant characteristic of the molecule
because pseudoephedrine does not have this
extra oxygen.  Instead it is more likely that this
tightly connected oxygen is used primarily to
hinder an attempt to make crystal meth.

METH-NBO

Figure 2

PHEN-NBO

Figure 3
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SUD-NBO

Figure 4

HOMO & LUMO Energies

In the previous sections, the main focus has been
on the molecular structures.  The properties that
will be evaluated in this section can be used to
determine the molecules reactivity.  The HOMO
(Highest Occupied Molecular Orbital) and
LUMO (Lowest Unoccupied Molecular Orbital)
are very important aspects to consider for this
type of observations.  This is because the HOMO
and LUMO are the most likely locations where a
reaction will occur.  The reaction is likely to
occur there because the electrons in the HOMO
have the most energy and therefore are the
electrons most willing to react.  The LUMO is a
likely location for a bond to occur as well
because any invading electrons from another
molecule will fill into the LUMO.  This is why
comparing the energies of those orbitals can
create an idea of how reactive a molecule is.

Our results showed that the most similar HOMO
and LUMO energies were between
pseudoephedrine and methamphetamine.  The
HOMO energy of pseudoephedrine was -0.33189
Hartrees, which is slightly more negative than
methamphetamines HOMO energy of -0.3215
Hartrees.  The LUMO energy of
pseudoephedrine is 0.13303 Hartrees and the
energy of the methamphetamine is 0.14107
Hartrees.  This indicates that pseudoephedrine is
slightly more stable than methamphetamine
because the lower the energy, the more stable the
molecule.  This assumption is in agreement with
the overall energy of the molecule which was
included in the calculation.  The energy of
pseudoephedrine was
-516.6978717 Hartrees, while the overall energy
of methamphetamine was -441.8491096.  This
proves that the energy of the HOMO and LUMO
can predict the stability of the molecule, and the
data here suggests that methamphetamine is
more reactive than pseudoephedrine.

The most stable molecule studied was
phenylephrine.  This molecule had HOMO
energy of -0.31576 Hartrees and LUMO energy
of 0.12751 Hartrees.  Suggesting that
phenylephrine is less reactive comparatively.
This is in agreement with the overall energy of
the -552.5004989 Hartrees.  This data suggests
the phenylephrine is the most stable and least
reactive, followed by pseudoephedrine and then
methamphetamine.  A table of all of the energies
can be viewed in Figure 5.

Figure 5

When comparing the locations of the HOMO
and LUMO of each molecule (which can be
viewed in figure 6.  It can be seen that both
methamphetamine and pseudoephedrine include
some of their HOMO on the carbon-nitrogen
“tail”.  However, phenylephrine’s HOMO is only
on the benzene and the unique oxygen atom
connected to the ring.  This further supports our
theory that the purpose of that oxygen is to
hinder the ability for one to create meth from
phenylephrine.

All three molecules LUMOs are mainly on the
benzene ring; for methamphetamine that is the
only location of the LUMO.  However both
pseudoephedrine and phenylephrine have a piece
of their LUMO extending to the common oxygen
on the “tail”.  This suggests that there must be
some reaction that occurs around that oxygen in
order for the nasal decongestant characteristic of
the drugs to work.

Meth-HOMO

 Sud -HOMO
Figure 6
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 Phen – HOMO

Meth – LUMO

 Sud - LUMO

Phen- LUMO
Figure 6

Conclusions

The many similarities between
methamphetamine and pseudoephedrine explain
why it was possible for criminals to easily
manufacture the illegal drug.  The main
likenesses between the two drugs were based on
their structures.  Meth and pseudoephedrine
differed by only one oxygen atom and an
oppositely positioned dihedral angle.  The
oppositely positioned dihedral angle is assumed
to be the cause of the major difference in the two
molecules.  By removing the oxygen from
pseudoephedrine and relieving the stress of
electron to electron repulsion, methamphetamine
is made into a more unstable and reactive
molecule.

The similarity between pseudoephedrine and
phenylephrine was the oxygen atom connected to
the “tail”.  On both molecules the LUMOs were
located at this atom and it can be assumed that

this atom plays a vital role in the nasal
decongestant abilities of the two drugs.

Phenylephrine is ultimately impossible to be
made into meth because of its stability.  This
stability is caused by the reducing the number of
carbon atoms and adding one oxygen atom.
Because the arrangement of phenylephrine
makes it so stable, it is reluctant to be rearranged
into meth, and is therefore successful in that
aspect of its intended purpose.

Unfortunately, there are reports that
phenylephrine is ineffective when compared to
pseudoephedrine.  On the premise of this
research, a better replacement drug must contain
a benzene ring, a connecting “tail” that is
composed of carbons, one nitrogen atom, and
one oxygen atom that is more similar to
pseudoephedrine (not linear as in
phenylephrine).  The lone oxygen atom should
be the location of the LUMO, and the HOMO
should be diverted AWAY from the “tail”.  In
this way, the created molecule should be
relatively stable while still having as many
similarities to pseudoephedrine.
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Abstract:  Three explosive compounds – trinitrotoluene, nitroglycerin, and
RDX – were computationally analyzed for values of molecular energy and
dipole moment. These values were compared to major detonative features of the
explosives, including explosive velocity and autoignition temperature.
Computational efforts made extensive use of the Gaussian engine and the
B3LYP theory level. Due to limited data availability, some results were
ambiguous.
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Introduction

The detonative character of an explosive
compound can be quantified experimentally both
by the kinetic energy they deposit in their
surroundings – measured by explosive velocity
or velocity of detonation – and by their chemical
stability – measured in one way by their
autoignition temperature. That is, the
temperature at or above which the compound
may spontaneously decompose.  However, you
can also tell how much energy a molecule has
computationally by performing molecular energy
calculations on them.

Trinitrotoluene is an extremely explosive
chemical compound with the formula
C6H2(NO2)3CH3.  What makes TNT so explosive
is the NO2 groups attached on it.  These NO2
groups are in a very instable position and when
even the slightest amount of energy is acted upon
TNT, these NO2 groups violently respond by
flying off and releasing an extremely large
amount of energy.  At STP, TNT is a yellow
colored solid and when it explodes, it takes on a
sooty appearance because of its creation of
carbon in the explosion.  TNT has a high
activation energy, and is difficult to detonate
relative to primary explosives like nitroglycerin.

Nitroglycerin is also a very explosive chemical.
Its chemical formula is C3H5(NO3)3.
Nitroglycerin appears as colorless, oily heavy
liquid at STP and can detonate merely on
contact.  Nitroglycerin is what is used to make
dynamite and is an extremely explosive material.
In its pure form, nitroglycerin is one of the most
powerful explosives, but pure, it is extremely
hard to transport because of its explosive nature
and it quickly breaks down into its components.
Comparable to TNT, nitroglycerin has NO3
groups which are its main cause for its
explosion.  TNT has NO2 groups and its stands
to reason that nitroglycerin’s NO3 groups would
put off more energy.  TNT, however, has a solid
central benzene ring which nitroglycerin does
not, this may account for nitroglycerin’s
instability, and for TNT’s extremely high
activation energy.

RDX, also called Cyclotrimethylenetrinitramine,
is found in its pure form as a crystalline solid.
Its chemical formula is C3H6N6O6 and like TNT
and has NO2 groups that are most likely at fault
for its explosive nature.  RDX is mainly a

military explosive and is perfectly stable and
easily storable.  However, when used as an
explosive it is usually mixed with other
chemicals to supplement it.  RDX has a carbon-
nitrogen ring instead of a benzene ring like TNT.
These two chemicals with rings are much more
stable than their nitroglycerin counterpart, which
has no ring in its makeup and proves to be a
highly unstable chemical.

Pentaerythritol tetranitrate, more commonly
known as penthrite or PETN, while due to
computational issues not actually present in the
results and analysis portion of this paper, is still
worth a brief discussion. It, like nitroglycerin,
lacks a central ring structure, benzene or
otherwise. Since it and nitroglycerin are the most
sensitive to shock and friction of the group, the
trend is obvious. PETN is a white crystalline
solid used in small caliber ammunition, upper
charges in land mines, and the explosive core of
detonation cords. It is also considered the
benchmark compound between primary and
secondary explosives – any compound more
explosive than it is considered primary, while
any less is secondary.

What all these explosives have in common is
some sort of repeated NOx group that is unstably
bonded to the molecule, and a tendency to
respond violently to a range of activation
energies with substantial releases of kinetic
energy.  All of these chemicals except
nitroglycerin appear as solids at STP, and given
its similarly unique relatively high sensitivity,
these two features may share a common
chemical cause.

Computational Approach

Using the molecular editor builder of WebMO1

on the North Carolina High School
Computational Chemistry Server2, the molecules
C3H6N6O6 (RDX), C3H5(NO3)3
(nitroglycerin), and C6H2(NO2)3CH3 (TNT)
were created. The Tinker and Gaussian engines
were used to successively optimize their
geometries, with the latter optimization
occurring using the B3LYP//STO-3G level of
theory and basis set. Initial attempts at these
optimizations were done using the Hartree-Fock
theory level and 3-21G basis set, and failed. To
remedy these failures, the pre-optimization using
Tinker was run to minimize the work required of
the Gaussian optimization, the theory level was
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changed to B3LYP, and the basis set minimized
to STO-3G.

A fourth molecule, C5H8N4O12 (PETN), was
also attempted, but failed repeatedly and was
unresponsive to changes in engine, theory level,
and basis set size. It was attempted at
B3LYP//STO-3G (Gaussian), PM3 (MOPAC),
and AM1 (MOPAC).

Molecular energy calculations were then run on
the optimized molecules, using the Gaussian
engine and again using B3LYP level of theory,
this time with a basis (3-21G) basis set. Values
for velocity of detonation and autoignition
temperature were retrieved from an online data
base, though one molecule (TNT) lacked an
autoignition temperature due to its relative
insensitivity to heat.

These values were plotted separately against
both the molecular energy and dipole moment
values taken from the Gaussian molecular energy
calculations mentioned earlier. This was done
graphically, using Vernier Software’s Graphical
Analysis software.

Results and Discussion

Using Vernier Software’s Graphical Analysis
software, molecular energy and dipole moment
were plotted against velocity of detonation and
autoignition temperature. The last property is of
somewhat limited use, because trinitrotoluene
lacks such a feature, and penthrite proved unable
to be computationally analyzed, reducing us to
only two data points for the analyses regarding
autoignition temperature: RDX and
nitroglycerin. The four graphs follow:
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Table 1.1

Table 1.1 shows values of molecular energy and
explosive velocity for TNT, RDX, and
nitroglycerin. A lack of any clear correlation
given the limited data points made a line graph
or linear regression pointless.
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Table 1.2

Table 1.2 graphs the dipole moment of TNT,
RDX, and nitroglycerin against their explosive
velocities. It shows a fairly strong negative linear
correlation, which is an unusual result given that
one would expect a highly polar molecule to be
less stable.
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Table 1.3

Table 1.3 shows the relationship between dipole
moment and autoignition temperature for the
data points RDX and nitroglycerin. Though the
literally minimal number of data points makes
any analysis tentative, the negative correlation is
an expected result – it indicates that as explosive
compounds grow more polar, the ambient
energies at which they can spontaneously
decompose are lower and lower, meaning they
are more unstable.
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Molecular Energy v. Autoignition Temp
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Table 1.4

Table 1.4 plots molecular energy and
autoignition temperature values for RDX and
nitroglycerin against each other, demonstrating a
negative linear relationship. This indicates that
higher-energy molecules are more unstable and
spontaneously and explosively decompose as
successively lower external temperatures.

In addition to plotting these values against each
other, in the case of trinitrotoluene and
nitroglycerin, the molecular energy values were
compared to established values found on an
online database. Nitroglycerin showed only an
extremely minor difference of ~.33 Hartrees,
while trinitrotoluene showed a more substantial
difference of just over 10 Hartrees. The
database’s trinitrotoluene energy value was
calculated using a significantly larger basis set
(6-31G(d)) than ours, the probable cause of the
difference. The database’s nitroglycerin energy
value, only slightly different, was also calculated
with a larger basis set but also with a less
accurate level of theory (Hartree-Fock), leading
the two effects to perhaps cancel each other out.

Conclusions

The results stated above are generally consistent
with expectations regarding molecular energy
and the stability and detonative force of
explosive compounds.

The lack of a strong and direct relationship
between the energy of the molecules and the
force of their compound’s detonation was
surprising, as was the inverse correlation
between dipole moment and velocity of
detonation. Though it was initially hypothesized
that more polar molecules would contribute more
to detonative character, an alternative theory
would be that breaking free of ionic bonding due
to polarity would absorb some of the energy of

detonation, decreasing the kinetic energy of the
released particles.

Autoignition temperature, though the reliability
of its small data set is low, nevertheless showed
a more expected relationship with both dipole
moment and molecular energy, displaying an
inverse correlation with each and therefore their
significance as indicators of instability.

The addition of PETN, and if possible other
common explosive compounds, would have
added to the certainty and legitimacy of these
results.
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Effects of Orientation on the Heat of Formation for
Substituted Functional Groups on Amphetamine

Marty Goldsmith, Aniqa Shahrier, and Alexandra Fish
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Abstract: The amphetamine molecule was used to study the effects of the orientation of functional groups
on the heat of formation because it is relatively simple and used in common medications, such as the drugs
Adderall and Dexerdrine.  To do this, eleven functional groups were selected, all of which only had one R
group.  The group was then substituted into amphetamine’s carbon ring in place of hydrogen in the ortho,
meta-, and para orientations.  Using the North Carolina High School Computational Chemistry Server, the
molecules were built and geometry optimizations were run using MOPAC with the PM3 theory.  Using
these geometries, a coordinate scan calculation was run using MOPAC.  From the results of this
calculation, the heat of formation for each molecule was recorded, as a measure of the stability of the
molecule.  Amphetamine without any functional groups was used for purposes of comparison.  Using these
results, it was determined that of the orientations, meta was the most stable and ortho was the least stable
orientation.  There was also a correlation between the total number of atoms in the functional group added
and the increase on the heat of formation.

Key Words: Organic chemistry, Orientation, Functional groups, Amphetamine

Introduction

Amphetamine is a drug which affects the central
nervous system, causing increased amounts of
norepinephrine, serotonin, and dopamine to be
released into the synaptic cleft.  In the short term,
it causes hyperactivity, decreased appetite,
hypertension and headaches, among other things.
Over time, however, amphetamine can cause
disrupted sleep patterns, damage to internal
organs, fatigue, and depression.  It is also
associated with psychological disorders such as
insomnia and altered mental states.
Amphetamine is highly addictive, and addiction
is linked to paranoia, depression, and lethargy.

Amphetamine is legal in the United States as a
prescription medication, but it is strictly
regulated.  It is used to treat attention-deficit
disorder (ADD), attention-deficit hyperactivity
disorder (ADHD), narcolepsy, and unresponsive
depression.   It is present in Adderal, a drug used
to treat ADHD, due to its effects, such as
improved impulse control.

Amphetamine is also a relatively small molecule,
with a chemical formula of C9H13N.  The
following diagram illustrates its structure:

Amphetamine was chosen because of its usage in
prescription medications and because of its
smaller size and simplicity.

For drug companies, it is an important factor for
drugs to be stable, and thereby reduce potential
harm to patients.  A measure of stability comes
from the heat of formation, 

Δ
Hf, for a

compound.  A decreased 
Δ

Hf means that a
compound is less likely to undergo a
spontaneous reaction, since its base energy is
lower.  This means that the molecule is more
stable. Spontaneous reactions are not desired
because they may have adverse side effects on



Page 35

those who are on the medication.  Therefore, in
this experiment, the 

Δ
Hf is used as the gauge for

the stability of the molecule.

When chemists find a compound that has
beneficial effects, they attempt to build similar
compounds, called analogues.  Researchers then
test all the analogues to find the most effective
one so they can use the compound to its full
potential. In this experiment, each functional
group was tested three times, the difference
being the orientation of the functional group in
relation to the amine structure on the carbon ring.
Only functional groups with one R group were
selected.  One aspect of this experiment is to
investigate the stability of different functional
groups, and the reasons behind their respective
stabilities.

In organic chemistry, there are three main
orientations for functional groups on
amphetamine’s carbon ring.  If the functional
group is next to the R group, the orientation is
termed ortho.  If there is a single carbon in
between the functional group and the R group,
the molecule has meta orientation.  Lastly, if the
functional group has two carbons separating it
from the R group, the molecule has para
symmetry.  A visual representation of these
orientations is seen below, with an alcohol group
used in place of a theoretical functional group.

The different orientations do have an effect on
the properties of the molecule, and should
therefore be investigated.  The second goal of
this experiment was to determine which, if any,
of the orientations are more stable.

Computational Methods
In this experiment the North Carolina High
School Computational Chemistry Server was
used to run all calculations.  MOPAC
computational software was used to do PM3
geometry optimization calculations on
amphetamine with different functional groups in
different orientations.  The key word GEO-OK

was necessary to keep these jobs from failing.
After running each molecule, we used the
optimized geometry to run coordinate scan
calculations using MOPAC PM3 once again,
with the same aforementioned keyword required.
We then recorded the heat of formation of each
molecule and looked for a correlation to this and
different properties of the molecules.

Results and Discussion

To determine the stability of the orientations, the
stability of each orientation per functional group
was ranked according to the value of its 

Δ
Hf.

As a low value for 
Δ

Hf indicates stability, the
orientation with the lowest 

Δ
Hf was ranked as

best, and the highest as worst.  We then tallied
the number of times each orientation was best,
worst, or medium for each functional group.
This resulted in the following results:

Orientation of
functional group

Lowest
Hf

Middle
Hf

Highest
Hf

Meta 5 5 0
Para 5 3 2
Ortho 0 2 8

This data shows that the meta position had the
best stability overall and that ortho had the works
overall stability, leaving the para orientation in
the middle.

Another factor which correlated to the heat of
formation was the total number of atoms in the
molecule.  As the number of atoms increased, the
heat of formation increased as well.  Also, as the
number of pi bonds within the functional group
increased, the heat of formation increased.
However, these conclusions might be misleading
because all of the functional groups with a large
number of total atoms also had the highest
number of pi bonds and were ring groups.
Because these groups are structurally similar,
other characteristics might be the deciding factor
on their heat of formation.

The number of nitrogen atoms in the molecule
might have had an effect as well.  The molecules
with the 7th and 10th highest heats of formation
both had two nitrogen atoms, while all the other
molecules had only one.  However, more
functional groups with multiple nitrogen atoms
would be required to confirm this trend.
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The following table shows all the functional
groups and their heat of formation in the
different orientations. They were compared to
amphetamine (C9H13N) itself, which has a heat of
formation of 12.72 kcal/mol.

Group
Chemical
Formula

Ortho Meta Para

Alcohol
C9H13ON

-31.90318
kcal/mol

-33.99745
kcal/mol

-32.38345
kcal/mol

Benzene
C15H17N

37.78881
kcal/mol

35.24875
kcal/mol

35.24875
kcal/mol

Toluene
C16H19N

30.32908
kcal/mol

30.02471
kcal/mol

31.62197
kcal/mol

Pyridine
C14H16N2

43.91472
kcal/mol

40.38100
kcal/mol

40.21254
kcal/mol

Amine
C9H15N

8.79534
kcal/mol

7.41391
kcal/mol

7.47016
kcal/mol

Aldehyde
C10H13ON

-23.04262
kcal/mol

-24.38050
kcal/mol

24.59987
kcal/mol

Carboxyl
C10H13O2N

-76.22312
kcal/mol

-78.69984
kcal/mol

-80.15367
kcal/mol

Nitrite
C9H12O2N2

13.91701
kcal/mol

11.58380
kcal/mol

11.52858
kcal/mol

Methyl
C10H14N

0.44531
kcal/mol

-0.10587
kcal/mol

0.7124
kcal/mol

Ethyl
C11H16N

-2.70395
kcal/mol

-3.9907
kcal/mol

-3.27619
kcal/mol

The phosphate group was also run; however, its
geometry optimization failed.  When looking at
the raw output of the run, the message “YOU
MUST SPECIFY "NOMM" OR "MMOK"
REGARDING MOLECULAR MECHANICS
CORRECTION” was seen. Since the meaning of
this message was unknown and there was already
a significant amount of data from the other ten
functional groups, it was decided that phosphate
was not required for this experiment.

The heat of formation for amphetamine was
higher than the heat of formation for several of
its derivatives that had functional groups
attached. This was surprising because it had been
assumed that amphetamine would be one of the
more stable compounds in this experiment.
Enough scientific background was not available

to interpret this result, and further research
would be necessary to fully analyze this trend.

Conclusion
The results of our data and data analysis suggest
that orientation of the functional groups has a
correlation with the heat of formation, and
therefore the stability of the molecule. Meta is
the most stable orientation while ortho is the
least stable orientation. The size of the functional
group also has a correlation. As the functional
group increases in size, so does the heat of
formation of the molecule, which means the
molecule becomes less stable. The stability also
decreases with an increase in the number of
carbon atoms in the molecule, but that can most
likely be attributed to the correlation with size.
The number of nitrogen atoms also seems to
have a correlation, but further research would
have to be conducted to confirm this. The
number of oxygen atoms did not seem to have a
correlation. Adding a carboxyl group to
amphetamine made it the most stable, while
adding a pyridine made it the least stable.
Amphetamine was surprisingly unstable
compared its analogues, ranking 8th overall in
stability out of 11 molecules. Finding the impact
of this discovery would require further research.
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Abstract: In this experiment we wanted to determine if there was a correlation between dipole moment and
number of atoms and heat of formation and the number of carbon rings of four different legal and illegal
drugs. We did this for Hydrocodone, Amphetamine, Cocaine, and Morphine. To do this we used the North
Carolina High School Computational Chemistry Server to determine the heat of formation of those drugs as
well as dipole moment of each molecule. We found that there was a correlation between dipole moment
and number of atoms, and there was a correlation between number of carbon rings and heat of formation.

Key words: carbon rings, dipole moment, heat of formation, correlation, morphine, cocaine, amphetamine, hydrocodone

Introduction
Many legal and illegal drugs have the

same properties and effects on the body just in
different amounts. Cocaine is a very powerfully
addictive stimulant drug that can be used in
many forms. The most common form, powdered,
hydrochloride salt, can be snorted or dissolved in
water and injected. “Crack” cocaine is cocaine
that has not been made in hydrochloride salt by
being dissolved in an acid. It comes in a rock
crystal and when heated, its vapors can be
smoked. Cocaine is a strong central nervous
system stimulant and interferes with the process
of dopamine, a chemical messenger associated
with pleasure and movement. Cocaine use causes
a buildup of dopamine which in turn causes a
continuous stimulation of receiving neurons and
thus creates the euphoria reported by cocaine
users. There are many physicals effects of
cocaine use including constricted blood vessels,
dilated pupils, and increased temperature, heart
rate, and blood pressure.  The length of the
effects depends on the method of administration.
The high is more intense the faster the
absorption. Increased use can reduce the period
of time the user feels a high and increase the risk
of addiction. Some complication that can result
from cocaine use can include disturbances in
heart rhythm, heart attacks, chest pain and
respiratory failure, strokes, seizures, headaches,
abdominal pain, nausea, loss of appetite and
malnourishment. The chemical formula of
cocaine is C17H21NO4 and the scientific name is
methyl.

Morphine is used to relieve moderate to
severe pain. It is only used but patients who are
expected to have constant pain for more than a
few days. Morphine is a member of the class of
drugs known as opiate (narcotic) analgesics.

These types of medicines work by changing the
way the body senses pain. Morphine comes as a
tablet or a liquid solution. Morphine should be
taken strictly according to the prescription
directions that accompany the drug. Some
doctors like to start a patient on a low dose of
morphine and increase the dose as necessary to
control their pain to try to decrease the risk of
dependency. Morphine can be very habit-
forming if not taken exactly as directed. If a
patient takes a larger dose, takes it more often, or
in a different way than that described by their
doctor then they can become addicted. Morphine
can cause dehydration so when taking the
medication a patient should drink lots of fluids.
Morphine can cause many side effects including
dizziness, lightheadedness, drowsiness, upset
stomach, vomiting, constipation, diarrhea, loss of
appetite, weight loss, changes in ability to taste
food, dry mouth, sweating, weakness, headache,
agitation, nervousness, mood changes,
confusion, difficulty sleeping, stiff muscles,
double vision, red eyes, uncontrollable eye
movements, chills, flu like symptoms, and
difficulty urinating. There are some very serious
side effects of morphine including irregular
breathing, blue or purple skin, irregular
heartbeat, seizures, fainting, rash, tightness in the
throat, and swelling of the extremities. Morphine
is also an opiate analgesic drug like cocaine. The
chemical formula of Morphine is C34H40N2O10S.

Hydrocodone is prescribed as a pain
reliever, sometimes in conjunction with other
drugs, to relieve moderate to moderately severe
pain. It can be used as a tablet, capsule, or liquid.
It is generally taken every four to six hours to
control pain. Hydrocodone can be addicting and
habit-forming so a patient should never take a
larger dose, take a dose more often, or for a
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longer period of time than it is prescribed.
Hydrocodone can cause lightheadedness,
dizziness, drowsiness, upset stomach, vomiting,
constipation, stomach pain, rash, difficulty
urinating, difficulty breathing, and mood
changes. The chemical formula for hydrocodone
is C18H21NO3.

Amphetamine is used as a central
nervous system stimulant in the treatment of
many conditions such as attention deficit
hyperactivity disorder, depression, and
narcolepsy but it is also used illegally as a
stimulant. Amphetamine is a colorless, volatile
liquid that is used for many things both legal and
illegal. It is used as an effective nasal
decongestant, an analeptic, and an anorexic. It is
also used to treat depression because it caused an
enhanced sense of well-being and euphoria.
Amphetamine cause side effects such as dry
mouth, heart palpitations, hypertension, stomach
cramps, decreases urinary frequency, dizziness,
dysphoria, headache, tremors, restlessness,
insomnia, decreases appetite, increased
aggressiveness, anxiety, and paranoid panic
states. Extreme amounts of amphetamine can
cause convulsions, cerebral hemorrhaging, coma
or death. The euphoric side effects have made
amphetamine a widely abused drug. Tolerance
occurs after taking the drug for long periods of
time so abusers tend to increase the amount that
they consume increases their risks of serious side
effects and long term dependency. Amphetamine
has the chemical formula C9H13N.

For each of these molecules we wanted
to determine the dipole moment and heat of
formation using The North Carolina High School
Computational Chemistry Server1. We want to
determine if heat of formation is influenced by
the number of carbon rings. Heat of formation is
the enthalpy change during the formation of a
pure substance from its elements, at constant
pressure. We also wanted to determine if there
was a correlation between dipole moment and
number of atoms in the molecule. Dipole
moment of a molecule is the product of either
charge in an electric dipole with the distance
separating them.

Computational Approach
Before performing any calculations for

the project we had to determine what illegal and
legal drugs would be used. Once determining
that cocaine, morphine, amphetamine, and
hydrocodone would be used the calculations
started. Our calculations were performed on the

WebMO2 North Carolina High School
Computational Chemistry Server. We used this
server to build the molecules and then ran a
geometry optimization using MOPAC PM3.
After the molecules were done running through
the server they were ran again but this time under
a molecular energy calculation using MOPAC.
The configuration of each molecule can be seen
below, respective from above:

Each drug and its heat of formation, dipole
moment, number of carbon rings and number of
atoms were then recorded.

Our goal was to find a correlation
between the number of carbon rings formed and
the heat of formation and between the number of
atoms and the dipole moment. The structures of
each molecule were also viewed as a factor in the
correlation. In order to perform the correlations
we used Graphical Analysis software to graph
and find the correlations stated above.

Results and Discussion
From our data, we were able to compare

different properties of the four molecules.  We
first wanted to compare the dipole moment to the
number of atoms found in each molecule.  We
found the number of atoms in each compound
and graphed them against the dipole moment
calculated in each run.  After looking at our
graphs, we then fit a linear line to the data set.
For atom number vs. dipole moment, we got an

Drug Compound #of
atoms

# of
carbon
rings

Heat of
formation

Dipole
moment

Cocaine C17H22NO4 44 2 -50.50265 3.566
Morphine C17H19NO3 40 3 -76.60793 2.03
Hydrocodone C18H21NO3 43 2 -43.47238 4.185
AmphetamineC9H13N 23 1 14.75653 1.677
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equation of y = 0.0993x – 0.633, where y is the
dipole moment and x is the number of atoms.
Our data is graphed below in Figure 1.1:

Figure 1.1

For heat of formation and carbon rings,
we used the same method of comparison.  We
found an equation of y = -34.8x + 39.2, where y
represents heat of formation and x represents the
number of carbon rings.  Our data for the data is
as follows in Figure 1.2:

Figure 1.2

Conclusions
During this project, we discovered

many things about our four molecules.  Between
number of atoms and dipole moment, there was a
higher dipole moment for larger molecules,

meaning there is a positive linear relationship
between the two.  A larger amount of carbon
atoms in a molecule usually require more
hydrogen atoms and will therefore be more
polar.

With the number of carbon rings and
heat of formation, the opposite was true.  The
higher the number of carbon rings, the lower the
heat of formation.  We think this might be
because as the number of carbon rings increase,
the number of total atoms increases.  From basic
chemistry knowledge, we know that a molecule
with more atoms will have a harder time holding
the molecules together, so they will break apart
with less energy.
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Abstract:  Our purpose was to investigate the relationship between bond length,
number of bonds broken, and heat of formation in eight different molecules, four
of which were traditional energy sources (gasoline, propane, diesel, methanol)
and four of which were alternative energy sources (liquid nitrogen, ethanol,
butanol, hydrogen gas).  All of our calculations were done using the NC High
School Computational Chemistry server (chemistry.ncssm.edu), which supports
MOPAC.  We built the eight molecules and ran a geometry optimization on all
of them using MOPAC at the PM3 level.  Using the values we calculated during
the geometry optimization, we created a spreadsheet of the heat of formation,
number of bonds broken, and average bond length, then created a series of linear
regression graphs using the independent variables (number of bonds broken and
average bond length) as the x values and using the heat of formation as the y
value.  The factor we observed was the calculated R square value, which
indicates a good correlation if it is close to 100%, and a poor correlation if it is
close to 0%.  Based on the data and data analysis, the results suggest that the
regressions for the number of bonds broken graphed against the heat of
formation were much better fits for the data than those of the average bond
lengths broken graphed against the heat of formation, and it is therefore possible
to assume that while there is a strong correlation between the number of bonds
broken and the heat of formation of a molecule the average length of all of the
bonds broken has little to do with the heat of formation of  a molecule.  Bond
lengths individually, however, may have much to do with the heat of formation,
although this study did not investigate that topic.  Any errors in our calculations
were caused by the inherent flaw of molecular modeling, that all models are
incorrect, as well as the possible human error of building the models incorrectly.

Key words: heat of formation, geometry optimization, bonds broken, MOPAC, PM3

Introduction

Throughout the world many different fuel
sources are used for energy.  Two major
categories of fuels exist at this time.  There are
the traditional fuel sources, which are non-
renewable resources and supposedly contribute
to the depletion of the ozone layer, and then
there are the alternative fuels, which are less
popular but are usually renewable.

In this experiment, four fuel sources from each
group of traditional and alternative were chosen.
The traditional fuel sources are gasoline,

propane, diesel, and methanol.  The alternative
fuel sources are liquid nitrogen, ethanol, butanol,
and hydrogen gas.

Most of the traditional fuel sources chosen are
made from petroleum.  Gasoline comes from a
petroleum mixture containing hydrocarbons and
benzene or iso-octane and is mainly used as fuel
in internal combustion engines.  Propane comes
from petroleum products and is a three-carbon
alkane.  Propane is commonly seen being used
for fuel around the home and for engines.  Diesel
is a fractional distillate from fuel gas that is
mostly petroleum.  Diesel is used as fuel for the
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diesel engine, created by a man by the same
name.  Methanol is now made synthetically but
once was made from the distillation of wood.
Methanol is used as fuel for internal combustion
engines.

Liquid nitrogen is made from the fractional
distillation of liquid air.  It could be used to fuel
cars.  Ethanol is commonly made from
petrochemical feedstocks.  It is used for fuel for
automobiles and has been used as fuel for
rockets.  Butanol is created from fossil fuels and
can be used in cars and produces more energy
than ethanol.  Hydrogen gas is found naturally
and is a potential alternative as fuel for
automobiles.

In this experiment bond length, number of bonds
broken, and heat of formation were investigated.
According to previous experiments, bond length
and the heat of formation are directly correlated -
the shorter the bond length, the higher the heat of
formation.  The number of bonds broken has also
related to the heat of formation in the past.  As
the number of bonds between atoms increase, the
length of the bonds decreases and the strength of
the bonds increase.  Therefore, the heat of
formation increases with an increase of bonds
broken.  This experiment investigated whether
past experiments were correct in their results.

Computational Approach

This experiment used the North Carolina
Computational Chemistry Server to run all
calculations through the WebMO molecular
editor.  The molecules that make up eight
different traditional and alternative energy
sources were built.  Once each was built, it was
optimized using the “comprehensive cleanup”
molecular mechanics package found in the
WebMO molecular editor.  The rough
optimization was used to fix the geometry of the
chains as well as to add hydrogen atoms in the
appropriate places.  Finally, using the software
package MOPAC, geometry optimizations were
calculated using the PM3 basis set.

Results and Discussion

The heat of formation, number of bonds broken
and average bond length for each molecule was
found in the raw output of the calculation and
recorded.

After recording these data the molecules were
graphed against each other in Microsoft Excel,
with the number of bonds broken as the x
variable and the heat of formation being the y
variable.  The goal of creating this graph was to
calculate a regression line that could be used to
extrapolate and determine the amount of energy
released when a certain number of bonds are
broken in a molecule.

The regression for the graph of the data of all
eight of the molecules was determined to be:
4.4300629.6378yx=−−

where y is the dependent variable, or the heat of
formation, and x is the independent variable, or
the number of bonds broken.  The R Square
value, which shows how well a linear regression
line fits a graph, was found to be 0.600138,
which means that the line’s fit is ~60.0%
accurate.  The linear regression graphed onto the
data plot can be seen in Figure 1 below.

# of bonds to break Line Fit  Plot

-120
-100
-80
-60
-40
-20

0
0 10 20

# of bonds to break

H
ea

t o
f F

or
m

at
io

n

Heat of
Formation

Predicted Heat
of Formation

Figure 1

Next, the four molecules of the traditional energy
sources (gasoline, diesel, propane, and methanol)
were graphed against each other in Microsoft
Excel, with the number of bonds broken as the x
variable and the heat of formation being the y
variable.  The goal of creating this graph was to
calculate a regression line that could be used to
extrapolate and determine the amount of energy
released when a certain number of bonds are
broken in a traditional energy sources molecule.

The regression for the graph of the data of the
traditional energy source molecules was
determined to be:
4.0772629.7845yx=−−



Page 43

where y is the dependent variable, or the heat of
formation, and x is the independent variable, or
the number of bonds broken.  The R Square
value, which shows how well a linear regression
line fits a graph, was found to be 0.767365,
which means that the line’s fit is fairly accurate.
The linear regression graphed onto the data plot
can be seen in Figure 2 below.
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We observed that the out of our four traditional
energy sources, gasoline, diesel and propane
were all hydrocarbons, and methanol was not.
We therefore created a subsequent graph of the
three hydrocarbons, excluding methanol which
has an OH group.  The x variable is the number
of bonds broken and the y variable is the heat of
formation.  The goal of creating this graph was
to calculate a regression line that could be used
to extrapolate and determine the amount of
energy released when a certain number of bonds
are broken in a traditional hydrocarbon energy
sources molecule

The regression for the graph of the data of the
traditional energy source molecules was
determined to be:
5.5436512.0483yx=−−

where y is the dependent variable, or the heat of
formation, and x is the independent variable, or
the number of bonds broken.  The R Square
value, which shows how well a linear regression
line fits a graph, was found to be 0.999636,
which means that the line’s fit is extremely
accurate.  The linear regression graphed onto the
data plot can be seen in Figure 3 below.
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Just as the molecules of the traditional energy
sources were graphed against each other in
Microsoft Excel, so were the molecules of the
alternative energy sources (liquid nitrogen,
ethanol, butanol, and hydrogen gas).  The
number of bonds broken is the x variable and the
heat of formation is the y variable.  The goal of
creating this graph was to calculate a regression
line that could be used to extrapolate and
determine the amount of energy released when a
certain number of bonds are broken in an
alternative energy sources molecule.

The regression for the graph of the data of the
alternative energy source molecules was
determined to be:
49.930522.99277yx=−+

where y is the dependent variable, or the heat of
formation, and x is the independent variable, or
the number of bonds broken.  The R Square
value, which shows how well a linear regression
line fits a graph, was found to be 0.797189,
which means that the line’s fit is fairly accurate.
The linear regression graphed onto the data plot
can be seen in Figure 4 below.
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As the linear fits for these four data sets are all
fairly decent, the linear regression equations
found for each data set can be used together to
extrapolate and estimate how much energy will
be released in a molecule when a given number
of bonds is broken.  These values are only
estimates, however, because the linear fits for the
graphs are not perfect, although all are at least
60% accurate according to the R square value.

Once the number of bonds broken and heat of
formation were graphed against each other in
Microsoft Excel we graphed the average length
of the bonds broken and the heat of formation for
each molecule against each other in Microsoft
Excel.  The goal of creating these graphs was to
calculate regression lines that could be used to
extrapolate and determine the amount of energy
released when a certain number of bonds are
broken in a molecule.

The regression for the graph of the data of all
eight of the molecules was determined to be:
53.314125.64826yx=−+

where y is the dependent variable, or the heat of
formation, and x is the independent variable, or
the average length of the bonds broken.  The R
Square value, which shows how well a linear
regression line fits a graph, was found to be
0.286292, which means that the line’s fit is fairly
poor.  The linear regression graphed onto the
data plot can be seen in Figure 5 below.
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The data set was then divided into traditional
energy sources (gasoline, propane, diesel and
methanol) and alternative energy sources (liquid
nitrogen, hydrogen gas, ethanol, butanol).  Using
the traditional energy source data, we graphed
the average length of the bonds being broken as

the x value against the heat of formation as the y
value.

The regression for the graph of the data of the
molecules of the traditional energy sources was
determined to be:
60.080234.05675yx=−+

where y is the dependent variable, or the heat of
formation, and x is the independent variable, or
the average length of the bonds broken.  The R
Square value, which shows how well a linear
regression line fits a graph, was found to be
0.015293, which means that the line’s fit is
extremely bad.  There is no real correlation in
these data.  The linear regression graphed onto
the data plot can be seen in Figure 6 below.
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The alternative energy sources were graphed
against each other in the same way, with the
average length of the bonds broken as the x value
and the heat of formation as the y value.

The regression for the graph of the data of the
molecules of the alternative energy sources was
determined to be:
49.930522.99277yx=−+

where y is the dependent variable, or the heat of
formation, and x is the independent variable, or
the average length of the bonds broken.  The R
Square value, which shows how well a linear
regression line fits a graph, was found to be
0.477236, which means that the line’s fit is
moderately poor.  The linear regression graphed
onto the data plot can be seen in Figure 7 below.
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As the linear fits for these 3 data sets are all
moderately to extremely poor, it would be
unwise to use any of the R Square values to
interpolate or extrapolate on the data.

Conclusions

Based on the data and data analysis, the results
suggest that the regressions for the number of
bonds broken graphed against the heat of
formation were much better fits for the data than
those of the average bond lengths broken
graphed against the heat of formation, and it is
therefore possible to assume that while there is a
strong correlation between the number of bonds
broken and the heat of formation of a molecule
the average length of all of the bonds broken has
little to do with the heat of formation of  a
molecule.  Bond lengths individually, however,
may have much to do with the heat of formation,
although this study did not investigate that topic.

It is also interesting to note that although these
data is not discussed in this paper, the geometry
optimization calculation revealed that the amount
of energy per gram of the alternative energy
sources was on a whole much larger than the
amount of energy per gram of the traditional
energy sources.  Further studies should be
conducted to increase our knowledge of these
topics.
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Abstract:  We often use computational chemistry methods to solve real world problems.  One of the many
problems we face today is global warming and air pollution.  We decided to look at different nitrogen-
containing compounds that are known to have harmful effects on the environment and determine why some
are more harmful than others, specifically nitrogen dioxide (NO2).  Using the molecular editor builder of
WebMO on the North Carolina High School Computational Chemistry Server allowed us to have a greater
understanding of why NO2 is more harmful and reactive in the environment.  Using Gaussian software
package at the Hartree-Fock level with a 3-21G basis set we were able to retrieve useful data relating to the
EHOMO and ELUMO correlation between the several nitrogen molecules being tested.  We began
researching each compound by running geometry optimization calculations followed by molecular orbital
calculations.  We used the molecular orbital calculations to retrieve the HOMO-LUMO gap and to compare
the different molecules, which allowed us to draw reasonable conclusions.  In the end it became clear that
NO2 was an outlier when compared to the other nitrogen molecules.  This difference could be a major
factor in how it reacts in the environment when compared to the others.

Key words:  Nitrogen Dioxide, Gaussian, Basis Set, EHOMO, ELUMO, HOMO-LUMO Gap

Introduction

       As each day passes by, pollution is
accumulated in every aspect of our Earth.  From
land to water and even in the air, pollution
continues to be one of the most researched topics
in the modern academic world.  Pollution hasn’t
always been a major problem for our world but
as many resources begin to become exhausted
and limited due to population increase, pollution
rates have skyrocketed.  In this research paper
we will specifically focus on air pollution and
furthermore target the activities of nitrogen
containing gaseous compounds in the
atmosphere.
       Currently Earth’s atmosphere is composed
of 78.1% nitrogen (N as N2), 20.9% oxygen (O
as O2), 0.03% carbon dioxide (CO2), and a
number of trace gases.  This clearly shows a
significant portion of the Earth’s atmosphere is
made up of nitrogen which means that nitrogen
has an abundant realm activities present in the
atmosphere.  When natural atmospheric
chemicals mix with anthropogenic emissions
mainly from fossil fuel burning in solar
radiation, the result is photochemical smog.
These reactions are aided by the help of the sun
which gives it the photochemical part in the
proper name.  The chemical mixtures produced
by reactions such as these lead to the generation

yellow brown, reddish, and gray hazes in the sky
that can be very detrimental to living organisms
and ecosystems.   A few contributors of smog
can be carbon monoxide (CO), sulfur and
nitrogen oxides, toxic hydrocarbons such as
benzene and toluene, lead, and particulates.
These harmful chemicals are most abundant in
cities where there are a lot of vehicles used for
transportation which are important sources of
carbon monoxide, hydrocarbons, NOx’s, SOx’s,
and other particulates found in urban areas.  The
primary photochemical reaction producing
oxygen atoms is:

NO2 + hv (_ < 420 nm)  NO + O

       Ozone is also an important product of the
reactions involved in the generation of smog.
Ozone is beneficial in the upper atmosphere
(Stratosphere) because it helps protect the
Earth’s surface from harmful UV radiation.
However, when ozone is present in the lower
atmosphere it can be deleterious to the health of
plants and animals.  Reactions involving oxygen
species (M is an energy-absorbing third body)
and atomic oxygen leads to several reactions
involving oxygen and nitrogen oxide species:

O + O2 + M  O3 + M
O + NO + M  NO2 + M
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O + NO2  NO + O2
O3 + NO  NO2 + O2

O + NO2 + M  NO3 + M
O3 + NO2  NO3 + O2

       Many different compounds of nitrogen are
present in the atmosphere but NO2 is the one
chemical which has the most negative effect on
the Earth’s atmosphere.  Varying from NO
(nitrous oxide) to N2O5, NO2 when reacted with a
certain wavelength of sunlight begins a chain of
reactions which all contribute to photochemical
smog and ozone buildup.  We believe that this
may be due to the EHOMO-ELUMO gap of NO2
compared to the other nitrogen containing
compounds.
       In each compound, there are a specific
number of occupied orbitals and of unoccupied
orbitals, according to how many atoms are in
each compound, their charges, etc.  Within these
orbitals there are numbers that correspond with
each occupied and unoccupied orbital: the
energy of the highest occupied orbital is the
EHOMO, as explained in its title, (Energy of the
Highest Occupied Molecular Orbital) and the
energy of the lowest unoccupied orbital is the
ELUMO (Energy of the Lowest Unoccupied
Molecular Orbital).  The difference between
these two values if the EHOMO-ELUMO gap
which determines the speed of the reaction and if
the reaction occurs at all.  The value of the
EHOMO-ELUMO gap in each compound
determines its compatibility with other
compounds.  This is why we decided to
investigate the EHOMO-ELUMO gap of each
nitrogen-containing compound in our research.
       This research project attempts to analyze and
explain why NO2 reacts as it does and why other
nitrogen containing compounds act differently.
Our goal in performing this research project is to
find some relationship between the EHOMO-
ELUMO gap of each different compound and the
compound itself (# of atoms, # of N atoms, # of
orbitals, etc.)

Computational Approach

       In calculating the data needed to perform our
experiment, we relied on several computational
methods including computational software,
spreadsheet applications, and computers.  Using
the molecular editor builder of WebMO on the
North Carolina High School Computational
Chemistry Server we were able to run several

different calculations on the different nitrogen-
containing compounds.  The particular
computational software used for the calculations
in our experiment was Gaussian.  We used the
Gaussian software at the Hartree-Fock level of
theory and 3-21G basis set in order to run
Geometry Optimization and Molecular Orbital
calculations.  The NC HS Comp. Chem. Server
allowed us to run numerous molecular models in
a reasonable amount of time and also generate
reasonably accurate results.  We were running
these numerous calculations in order to compare
the E HOMO and E LUMO values for several
nitrogen-containing compounds that have known
harmful effects in the environment.  Throughout
our computational procedures we discovered that
using the Gaussian software to run geometry
optimization calculations with HF 3-21G took a
significantly larger amount of time than running
molecular orbital calculations with the same
software.  These run times range from one
minute and twenty one seconds to four minutes
and thirty seven seconds.  This provides a
reference for future use of this software package.

Results and Discussion

Before analyzing any data, we observed the
electrostatic potential of each compound.  These
results displayed to us the positive and negative
areas of the compound, which are possible
reaction sites for each compound.  Using these
electrostatic potentials we were able to see where
each compound could possibly react with other
compounds such as O2.  Below are the
electrostatic potentials for each of the 4 nitrogen-
containing compounds.

Nitrogen Oxide (NO) Electrostatic Potential
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Nitrogen Dioxide (NO2) Electrostatic Potential

Nitrate (NO3-1) Electrostatic Potential

Dinitrogen Pentoxide (N2O5) Electrostatic
Potential

Our results were organized using Microsoft
Excel Spreadsheet in which we recorded each
compound and their respective CPU times (secs),
EHOMO (Hartrees), ELUMO (Hartrees) and
HOMO-LUMO gap (Hartrees), as shown below:

We also used Logger Pro Version 3.4.1 to graph
the number of atoms in each compound vs. the
EHOMO-ELUMO gap of each compound.  This
data resulted in a scatter plot displayed below:

As shown in the graph above, all except one of
the nitrogen-containing compounds follow a
linear regression line.  This one outlier is NO2
which, as we researched, is the most compound
that has the most negative effects on the
environment.  Nitrogen dioxide’s outlier
presence in this graph gives us some explanation
why NO2 behaves so much differently than the
other nitrogen-containing gaseous compounds in
the atmosphere.

Conclusions

Based on the data and the data analysis of
nitrogen-containing compounds, the values of
the EHOMO-ELUMO gap in each of the
compounds follow a linear regression line path
with NO2 being an outlier in the data.  The
relationship of the EHOMO-ELUMO gap of
NO2 in comparison to the other nitrogen
containing compounds (NO, NO3

-1, and N2O5)
can further be evaluated to determine what

Molecules
CPU
Time
(secs)

EHOMO
(Hartrees)

ELUMO
(Hartrees)

HOMO-LUMO
Gap

NO 10.5 -0.44079 0.13111 0.5719
NO2 10.5 -0.4892 0.05264 0.54184
NO3

-1 10.6 -0.19062 0.36486 0.55548
N2O5 10.7 -0.5077 0.0249 0.5326
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components of the NO2 compound make it
different.  Understanding its reactivity and
interactions with other compounds in the
atmosphere can assist in determining the severity
of pollution and its effects on life on Earth.
Finding this outlying value of the EHOMO-
ELUMO gap of NO2, shows that there is a
difference in the speed of the reaction and the
compatibility of NO2 with other compounds in
the Earth’s atmosphere.
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Comparison of Morphine and Morphine Analog Structures in Relation to Responses of
the Central Nervous System

A. Michelson and E. Willis
North Carolina School of Science and Mathematics, Durham, NC

June 5, 2007

Abstract:

Pain in the body can be suppressed by various painkillers such as opioids. Morphine and
morphine analogue structures are opioid agonists that bind to the same receptor site.
Also, Naltrexone is an opioid antagonist that reverses the effects morphine and morphine
analogues on the body; however, it binds to the same receptor site. The structures of these
molecules vary somewhat, but this variance effects the potency of each molecule greatly.
We hypothesized that the electrostatic potential would show further explanation of the
potency differences among each of the molecules. After running a “Molecular Orbital”
calculation using MOPAC AM1 on each of the molecules we found that our data shows
no correlation between electrostatic potential and potency. Proving our hypothesis
incorrect, we did a further analysis and found that the LUMO of the molecules had a
correlation with the potency. Also confirmed was the length of the protruding carbon
chain on each molecule versus potency was accurate.

Keywords: computational chemistry, medicinal chemistry, morphine, codeine, etorphine,
naltrexone, heroin, electrostatic potential, molecular structures, molecular geometry

Introduction

Pain is an uncomfortable sensation that occurs
when sensory fibers are exposed to extremes.
There are two types of sensory fibers that signal
pain: A-delta fibers and C fibers. Both of which
are part of the sensory-somatic branch of the
peripheral nervous system. From these nerve
fibers, the pain signal is sent to the spinal cord
where it is transferred to another nerve called the
interneuron. From the interneuron, the signal is
carried to the spinothalmatic tract which
proceeds up into the brain. When the signal
reaches the brain, nerves within the brain
interpret the signal as pain.

Our body produces natural painkillers that
suppress the pain signals from reaching the
brain. One of several natural painkillers is a
ligand called enkephalin. This chemical is
released along the interneuron and binds to
receptors that are in close proximity to where the
pain signals are passed onto the spinothalmatic
tract. When this ligand binds to the receptor, pain
signals become suppressed, thus stopping the
signal from reaching the brain. Other than
enkephalin, there are synthetic painkillers that
can also bind to the same receptors. These
receptors include mu, sigma, delta, and kappa

receptors which play an important role in the
regulation of pain in the spinal cord and in the
central nervous system.

A synthetic chemical that can bind to the same
receptors as enkephalin are opioids. Opioids are
highly addictive drugs that are known for
analgesic effects. The most common opioid
agonist used is morphine. Because of morphine’s
structure, it binds to mu receptors quite easily.
As shown in the figure 1 below, morphine has 5
rings: an aromatic ring, a cyclohexane ring, a
cyclohexene ring, a piperidine ring, and
tetrahydrofuran ring.

Figure 1: Morphine
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The amine nitrogen in the morphine molecule
binds to an anionic site of the receptor. Also, the
receptor has a cavity that accommodates the
projecting piperdine ring, which is the ring
containing the amine nitrogen. Lastly, there is a
flat surface of the receptor that binds the
aromatic ring by Van der Waal’s forces. Because
of the receptor’s shape, morphine is able to fit
easily with the receptor.

There are other molecules that have the same
basic shape and can be derived from the
morphine structure. These molecules are called
morphine analogues. An example of a morphine
analogue is codeine. If we were to substitute the
hydroxide group on the aromatic ring of
morphine to –OCH3 by the process of O-
methylation, we would yield codeine (Figure 2).
Because of this process, when codeine binds to
the receptor site, its potency is reduced by 15%.

Figure 2: Codeine

Codeine’s molecular structure of where it binds
to the receptor is identical to that of morphine;
however, the –OCH3 makes the protruding
carbon chain branch, thus changing the potency.
The potency of the molecule seems to be
dependent on the length of the protruding carbon
chain. This protruding carbon chain decreases
lipid solubility, thus a decrease in potency.

Also known as 3,6-diacetylmorphine, heroin is
the most well known of morphine analogue
structures. If the hydroxide groups were to be
substituted with –OCOCH3 we would yield
heroin, another opioid agonist that is 2-3 times
more potent than morphine (Figure 3).

Figure 3: Heroin

Most of the increase in potency is due to the
protruding carbon chain. The length of this
protruding chain of heroin is two carbons and
this causes increased lipid solubility. This leads
to enhanced rapid penetration into the central
nervous system.

A more powerful morphine analogue and opioid
agonist is etorphine. Etorphine has a much larger
formation than morphine’s structure (Figure 4).
The structure of etorphine is identical to
morphine in the region where it binds to the
receptor site. However, it is thought that there is
a lipophilic pocket into which the C(OH)MePr
side-chain might fit on the receptor, thus
increasing the lipid solubility in the receptor site.
This C(OH)MePr side-chain is an eight carbon
chain. This increase in carbon chain length
makes etorphine 1000 time more potent than the
side-chain-lacking-structure morphine.

Figure 4: Etorphine

Currently this chemical is used to immobilize
large animals, such as elephants, and is too
dangerous to use for human therapy.

It is possible to have a chemical structure that is
derived from the opioid-agonist morphine but
not be an opioid agonist themselves. These
structures are called opioid-antagonist morphine-
analogue structures. An example of an opioid
antagonist is naltrexone (Figure 5). Naltrexone is
used to treat patients’ narcotics addictions.

Figure 5: Naltrexone
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This chemical again has a similar structure to
morphine except for several substitutions. When
the N-methyl group from morphine is substituted
with larger alkyl groups, analgesic effects
reduce. In Naltrexone, specifically, the new
group is an N-cyclopropyl group thus the
chemical name is N-cyclopropyl-
noroxymorphone.

Morphine, Codeine, Heroin, Etorphine, and
Naltrexone all bind to the same receptor.
Structurally, these molecules are similar in the
region that binds to the receptor site, but
different in the protruding carbon chain. Also,
the electrostatic potential will be observed to see
if there is any support in the binding of the
molecules to the receptor site. The purpose of
this experiment is to explore morphine and
morphine analogue structures and each of the
molecules potencies for the same receptor site.

Our hypothesis is that there will be a correlation
between the molecular structure and electrostatic
potential with potency of the molecule.
Hopefully from this experiment, there will be an
explanation to why simple changes in the
molecular structure and electrostatic potential
charges yield such different results in the
potency effects of each molecule.

Computational approach

The Molecules were built using WebMO pro and
then run through the North Carolina High School
Computational Chemistry Server. Molecular
Orbitals calculations were run using model
chemistry AM1//HF/6-31G(d).  The Geometry
Optimization was done using the software
package MOPAC and the Molecular Orbitals
calculations were run using Gaussian94. After all
calculations were run, regressions were made
relating the potency to: LUMO, HOMO, max
electrostatic potential, and min electrostatic
potential. No significant correlations could be
discerned from the HOMO, max or min
electrostatic potentials. However a strong
correlation was found between the LUMO

energy and the potency.  The resultant regression
is as follows:

y = 10-33x-38.379

R2 = .8651

Where y is the potency and x is the LUMO
energy in Hartrees.

Refer to Index: Chart 1

Results and Discussion

The data showed no correlation for maximum or
minimum electrostatic potential versus the
potency of the molecules. Even though this could
explain the binding potential of the molecules,
the electrostatic potential is not a decisive factor
of the potency of the molecule. However, further
analysis of the molecules reveals that the LUMO
energies in relation to the potency of the
molecule have a correlation. The fitted
regression line for the LUMO energies vs.
potency was y= 1*10-33x4-38.379 with an R2 value
of .8651. The graph shows that the lower the
LUMO energy, the higher the potency the
molecule (Chart 1, Index). This makes sense
because when the LUMO energy is lower, it
becomes easier for valence electrons to jump into
a higher unoccupied molecular orbital. Thus,
jumping into the LUMO and making the bound
molecule more reactive.

Also, the length of the carbon chain of each
molecule in relation to potency was confirmed.
As the protruding carbon chain became longer,
the potency became greater. This proves to be
true up until eight carbons in the carbon chain.
After eight carbons, the molecule becomes too
large. At this point, the potency starts to decrease
due to problems in solubility.

Conclusions

1. Our initial hypothesis that there was a
correlation between either the
maximum or minimum electrostatic
potential and the potency of opioids was
incorrect.

2. Following further investigation a strong
correlation (R2 = .8651) was found
between the LUMO energies and the
potency in humans.
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3. We also found that there is a very
strong relationship between the length
of the carbon chain on the cyclohexene
ring of the opioid and the potency. The
most potent length for the carbon chain
is 8 carbons. This is presumably caused
by increased lipid solubility.

4. In addition we found that branching of
the carbon chain decreases the potency,
i.e. the carbon branched off the oxygen
on the cyclohexene ring of codeine.
This is also presumably caused by
changing the lipid solubility.
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Chart 1:

Lumo vs. Potency

y = 1E-33x-38.379

R2 = 0.8651
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Name Stoichiometry HOMO (Hartree) LUMO (Hartree) HOMO Orbital LUMO Orbital Max El. Pot. Min El. Pot. Potency
Morphine C17H19NO3 -0.29637 0.13607 76 77 0.16617 -0.11362 1
Etorphine C29H41NO4 -0.29254 0.12054 127 128 0.17521 -0.12075 1000
Heroin C21H23NO5 -0.31561 0.1303 98 99 0.10673 -0.13317 3
Naltrexone C20H23NO4 -0.30243 0.12682 91 92 0.17588 -0.1226
Codeine C18H21NO3 -0.28006 0.15028 80 81 0.14899 -0.13222 0.15
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Abstract:  Thermoplastics, whose properties can be significantly altered with the
addition or the removal of heat, are some of the most widely commercially manufactured
polymers in the chemical industry. Potential energy scans (PES) were run on the five
most common thermoplastics – polyethylene, polystyrene, polyvinyl chloride, and
polyethylene terephthalate – to determine their dihedral angles and most stable structural
configuration. Various other properties, including the lowest energy, dipole moment, and
heat of formation, of the thermoplastics were also computationally calculated, and they
were compared to the results of the PES. Relatively high positive correlations were
observed between the dihedral angle and both the lowest energy and the heat of formation
of the thermoplastic, while a high negative correlation was observed in the graph
comparing dihedral angle with dipole moment. From analysis of these results, it was
concluded that the various chemical properties of the thermoplastics were closely related
to their overall physical structures, which were determined partially by tacticity and
dihedral angles.

Key words:  Thermoplastic, polymer, potential energy scan, polyethylene, polystyrene,
polypropylene, polyvinyl chloride, polyethylene terephthalate, dihedral angle, lowest energy,
dipole moment, heat of formation.

Introduction

Thermoplastics
Thermoplastics are plastic materials with a wide
range of deformability, melting to a fluid state
when heated adequately and freezing to a glassy,
inflexible material when cooled. Most
thermoplastics are polymers with high molecular
weight whose chains can link through Van der
Waals forces, dipole-dipole interactions,
hydrogen bonding, or stacking of aromatic rings.
Currently, there are five main types of
thermoplastics extensively manufactured by
industries worldwide: polyethylene, polystyrene,
polypropylene, polyvinyl chloride, and
polyethylene terephthalate.

Polyethylene, as its name indicates, is a polymer
consisting of long chains of the monomer ethene.
Used in grocery bags, children’s toys, and even
bulletproof vests, polyethylene is the simplest, as
well as the most popular, of all commercial
plastics. Polystyrene is formed from the
polymerization of the monomer styrene, a liquid
hydrocarbon commercially manufactured from
petroleum by the chemical industry. Polystyrene
materials are usually very strong and able to
withstand much stress and wear. Polypropylene

consists of repeating units of propene, and is
used in food packaging, ropes, textiles,
laboratory equipments, and various automotive
components. Polyvinyl chloride (PVC) is one of
the most valuable products of the chemical
industry, as it is cheap and easy to assemble.
Today, over 50% of manufactured PVC is used
in construction, replacing traditionally used
wood, concrete, and clay. Lastly, polyethylene
terephthalate (PET) is used in synthetic fibers,
food and liquid containers, and thermoforming
applications.

Like many other polymers, thermoplastics are
characterized by a certain tacticity, the relative
stereochemistry of adjacent chiral centers within
a macromolecule chain. There are three types of
taciticity – isotactism, syndiotactism, and
atactism. As tacticity is closely linked to the
physical characteristics of a polymer, the precise
knowledge of tacticity is helpful in determining
various properties of the polymer, including its
melting point, solubility, and other mechanical
properties. Isotactic polymers have all their side
groups arranged on the same side of the polymer
chain, while syndiotactic polymers have
alternating orientation of the substituent side
groups. Atactic polymers have random



Page 56

orientation of the side groups, placed at either
side of the backbone.

Potential Energy Scan/ Surface (PES)
The Potential Energy Scan is used in association
to the Born-Oppenheimer approximation in
quantum mechanics to model chemical reactions
or interactions. PES functions under the
implication that the total molecular wavefunction
is written as a product of an electronic and a
nuclear wavefunction. The results of the PES can
be visualized through a curve or surface, which
represents the total energy of an atom
arrangement, with atomic positions as variables.
Several interesting features can be determined
from the analysis of the curve, the most
important of which is the global minimum for
the energy value. This numerically found value
corresponds to the most stable nuclear
configuration. Other points of interest may
include reaction coordinate, saddle points, local
maxima, and local minima.

Computational Approach

Using the molecular editor builder of WebMO1

on the North Carolina High School
Computational Chemistry Server2, short
molecules of polyethylene, polystyrene,
polypropylene, polyvinyl chloride, and
polyethylene terephthalate (PET) were built. The
structures are shown below:

Polyethylene: Polyvinylchloride:

Polypropylene: Polystyrene:

Polyethylene Terephthalate:

The molecules built consisted only of two repeat
units, as run time was an issue.

Each individual molecule was then optimized
with the “comprehensive cleanup” option in the
WebMO molecular editor. Next, geometry
optimizations were run with the semi-empirical
software package, MOPAC3, using a PM3 basis
set. Geometry optimizations yielded heat of
formation and dipole moment data. Using
MOPAC again, potential energy (coordinate)
scans were run on the bond joining the two
repeat units. This calculation gave the dihedral
angle in which the molecule was most stable.

All data was placed into an Excel file for
analysis and the following were graphed with
Graphical Analysis: lowest energy vs. dihedral
angle, dipole moment vs. dihedral angle, and
head of formation vs. dihedral angle. Linear
regressions were calculated for each data set to
determine any correlation.

Results and Discussion

For MOPAC calculations, all energies are
reported as heats of formation with units of
kilocalories per mole (kcal/mol) and all dipole
moments are reported with units of debye. The
data results are shown in Table 1.1.

Table 1.1 Computational Results

Based on the potential energy scans, the lowest
energy states determined by dihedral angle
results for each polymer were as followed:
polyethylene 290º, polystyrene 140º,
polypropylene and polyvinyl chloride 170º, and
PET 0º. Polystyrene, polypropylene, and
polyvinyl chloride all had dihedral angles close
to 180º due to the repulsion of the side groups
(i.e. the methyl group, chlorine, and benzene

Polymer
Heat of
Formation

Dipole
Moment

Dihedral
Angle

Lowest
Energy

Polyethylene -28.53771 0.005 290 -28.07443

Polystyrene 29.68608 0.249 140 29.74458

Polypropylene -39.59924 0.051 170 -39.36046
Polyvinyl
chloride -38.39923 1.557 170 -38.26529

PET -223.7152 2.293 0 -259.34237
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ring). For polyethylene, the placement of the
hydrogens is such that at 290º, there is the least
amount of repulsion between the hydrogens. As
for PET, the dihedral angle was 0º, causing the
double-bonded oxygens of the two repeat units
to be farthest away as possible.

The following diagrams are the screen-shots of
the optimal structure of each polymer determined
by the potential energy scan. Refer to Table 1.1
for the dihedral angle that corresponds to each
optimal structure.

Figure 1.1: Optimal Structure of
Polyethylene

Figure 1.2: Optimal Structure of Polystyrene

Figure 1.3: Optimal Structure of Polypropylene

Figure 1.4: Optimal Structure of Polyvinylchloride

Figure 1.5: Optimal Structure of PET

As seen in these screen-shots, the syndiotactic
form was most favorable for polystyrene,
polypropylene, and polyvinyl chloride. On the
other hand, the isotactic form was most favorable
for polyethylene and PET, as seen in Figure 1.1
and 1.5 respectively. In general, the syndiotactic
forms had dihedral angles close to 180º while the
isotactic forms had dihedral angles close to 0º or
360º.
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On the following page are graphs that provide a
visual comparison between the dihedral angle
and lowest energy (Figure 2.1), dipole moment
(Figure 2.2), and heat of formation (Figure 2.3)
results.

These data sets had the following correlation
coefficients: Lowest Energy vs. Dihedral Angle,
0.748; Dipole Moment vs. Dihedral Angle, -
0.769; and Heat of Formation vs. Dihedral
Angle, 0.728. All data sets had relatively good
correlations (>0.7).

Figure 2.1: Lowest Energy vs. Dihedral Angle

Figure 2.2: Dipole Moment vs. Dihedral Angle

Figure 2.3: Heat of Formation vs. Dihedral Angle
Conclusion

It wasn’t surprising that a high negative
correlation was observed between dipole
moment and dihedral angle (r=-0.769).
Functional groups are generally the factors that
determine polarity, and since the closer the
dihedral angles are to 180º, the farther away the
functional groups are located, so an inverse
relationship was expected between dipole
moment and dihedral angle.

The other two graphs (Figure 2.1 and 2,3) were
unexpected. They suggest that the lower the
dihedral angle, the lower the energy and heat of
formation. The opposite phenomenon had been
predicted, as it seemed that a dihedral angle
approaching 180º would cause the repelling side
groups to move farther away from one another,
thereby yielding a lower energy and heat of
formation. These unexpected results could have
been caused by other physical properties or
factors that were not taken into account in this
project. Despite some unexpected results, the
high correlation between dihedral angle, a
physical property, and various chemical
properties confirmed that structures have a
significant impact on a molecule’s chemical
reactions.

In the future, instead of examining dihedral
angles from 0º to 360º, only angles from 0º to
180º should be examined. Another alternative
would be to use quadratic fits for the graphs
instead of linear fits. These two options would
both account for the fact that 170º is really the
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same distance as 190º. Without this step, the
graphs may be misleading.
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Abstract:  Understanding unique characteristics of molecules is crucial for the progress of heavy metals
industry and molecular science. Chelating molecules are poorly understood, but they’re commonly used in
mining, heavy metal recovery, and environmental cleanup. Analysis of ethylenediamine tetraacetic acid,
also known as EDTA; the most frequently used chelating molecule, will shed new light into this
subcategory of heavy metal chemistry. We performed geometry optimizations using MOPAC AM1 and
PM3, along with Gaussian B3LYP. The second set of calculations was a Molecular Energy scan with
Gaussian 3-21G. Finally, we ran Potential energy scans utilizing MOPAC PM3 and Gaussian B3LYP, as
well as a GAMESS RHF and DFT with B3LYP functional theory with 3-21G basis set. The desired result
is a clearer picture of the molecular structure and bonding properties of EDTA. One principle point of
interest about the chelated configuration is the forced proximity of strongly electronegative elements:
Nitrogen and Oxygen. Under standard conditions, these atoms desire to be as far apart as possible, yet the
chelated molecule brings them closer than normal. Logically, the chelated state should therefore possess
unfavorable heats of formation. One of the primary goals of this research is to calculate enthalpies of
formation for both the chelated and non chelated states of EDTA. Potential Energy and Molecular Energy
calculations will help explain why the chelated configuration exists in nature.

Key words: EDTA, Potential energy scan, chelate, ligand

Introduction:

Chelating molecules possess flexible
functional groups, forming complexes in
which the metal ion is bound to two or
more atoms of the chelating agent. A
structure composed of primarily single
bonds enables the entire molecule to
twist and bend into many conformations.
These variable configuration states hold
great practical applications in medicine,
industry, and environmental cleanup.
EDTA, or ethylenediamine tetraacetic
acid, has four acetic acid functional
groups bound to two nitrogen atoms.
The nitrogen atoms are connected by
carbons. The molecule as a whole has a
charge of -4, because the four bonded
acetic acid groups have-1 charge. EDTA
bonds with metal ions in solution readily

because metal atoms generally have a
positive charge ranging from +1 to +4.
The unusual characteristic of this bond is
that EDTA itself bends around the metal,
forming an octahedral set of six bonds,
four in the plane, and two perpendicular
to the plane. In general, metal ions in
solution are toxic to human and animal
life, particularly cobalt, mercury,
cadmium, and lead. EDTA’s cage-like
bond is extremely stable, and the bonded
system can easily be filtered from water
or other solutes for reprocessing and
metal recovery. Exact characteristics of
these unique bonds are currently
indeterminate.
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Image of Chelated EDTA, copyright
http://upload.wikimedia.org/wikipedia/c
ommons/5/57/Metal-EDTA.png

Our primary goal is to configure this
molecule using MOPAC PM3 basis sets,
calculate the molecular energy and
enthalpy of formation, and eventually
calculate a 2-dimensional potential
energy scan (PES) of the bonds
responsible for chelation. If the chelated
configuration represents a low potential
energy, it might explain why EDTA
bonds so readily with the metal ions,
because when EDTA chelates, the
electronegative oxygen and nitrogen
atoms are forced closer together. Forcing
electronegative elements together
represents an unstable high energy state.
Unstable states do not occur naturally in
nature, so some other force must lower
the potential energy from endothermic
values to the exothermic, stable region.
Therefore, as the molecule itself does
not break bonds during i ts
reconfiguration chelation must reduce
the potential energy of the system as a
whole through currently unknown
means. Ab initio methods are
appropriate for a molecule of EDTA’s
size because it contains only 36 atoms,
including the hydrogens. B3LYP theory
will provide accurate data. Analyzing the
heat of formation change between
chelated and unchelated EDTA will
indicate how much energy is released

during chelation, an important property
to understand if a company wants to
extract the metal ion after chelation. The
potential energy scan will provide
information on energy gain or loss as the
molecule reconfigures itself. If the
change in potential energy is greater than
the repulsion of the electronegative
groups, we will understand more about
why EDTA exists in nature.

Computational Approach

Using the molecular editor
builder of WebMO1 on the North
Carolina High School Computational
Chemistry Server2, the molecule
Ethylenediaminetetraacetic acid, EDTA
and Ethylenediaminetetraacetic chelating
ligand with Cu 2+ was built. The initial
unchelated structure is shown below.

Unchelated EDTA

  Chelated EDTA Cu2+

Source:
http://en.wikipedia.org/wiki/EDTA
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After building the molecule we
optimized it with a comprehensive
cleanup molecular mechanics package
found in WebMO molecular editor.  This
comprehensive cleanup is very rough
and is not used for data acquisition.
After running this comprehensive
cleanup in WebMO we optimized
Ethylenediaminetetraacetic and the
EDTA Cu 2+ chelated ligand using
many different computational methods.
The first optimization used was the
computational software MOPAC with
the AM1 basis set.  Second, we
performed an additional MOPAC
geometry optimization using the PM3
basis set.  Next we performed molecular
energy calculations on both geometry
optimizations using the computational
chemistry software MOPAC with the
AM1 basis set along with the PM3 basis
set.  We also ran molecular energy
calculations on both molecules with the
computational chemistry software
Gaussian.  On those calculations we
used the Hartree-Fock theory and the
B3LYP theory along with the 3-21G
basis set.

The MOPAC computational
chemistry software along with the 3-21G
basis sets provided a rough guide of
molecular enthalpy and molecular
configuration.  These tests also indicated
a base line for necessary computational
server resources and CPU time.  To
acquire more accurate data we also used
computational methods with greater
numbers of basis set calculations.  The
calculations were run utilizing Gaussian
software with B3LYP theory and 6-
31G(d) basis sets.  The unchelated
molecule required seven hours of CPU
time.  Calculations for the Cu2+ chelated
ligand were forcibly halted after sixteen

and half hours due to insufficient
available resources.

With the above Geometry
Optimizations we performed potential
energy scans using the computational
chemistry software package MOPAC
along with the 3-21G basis set.  We also
ran a Gaussian potential energy scan on
the unchelated molecule with B3LYP
theory and 3-21G basis set.  We
attempted to analyze a potential energy
scan of the chelated form but the
software encountered unexpected errors
and failed to complete its calculation.

Results and Discussion

For MOPAC calculations, all energies
are reported as heats of formation with
units of kilocalories per mole (kcal/mol).
DFT calculations resulted in energies
with units of Hartrees (Eh).

The Geometric Optimizations succeeded
and provided a valid foundation for the
Molecular Energy and Enthalpy
calculations. The Potential Energy Scans
refused to run to completion for reasons
that have yet to be determined. A new
method is needed to adequately explore
EDTA’s molecular configurations.

All data is represented in the following
tables.

Gaussian Geometry Optimization: 6-
31G(d)

Stoichiometry C10H16N2O8
Symmetry C1
Basis 6-31G(d)
B3LYP Energy -1101.98387306 Hartree
Gaussian Molecular Energy calculation:
3-21G
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Stoichiometry C10H16N2O8
Symmetry C1
Basis 3-21G
B3LYP Energy -1095.8888153 Hartree
Dipole Moment
5.7178 Debye

Gaussian Molecular Energy Calculation:
STO-3G

Stoichiometry C10H16N2O8
Symmetry C1
Basis STO-3G
RHF Energy -1081.53118947 Hartree
Dipole Moment
4.1917 Debye

Conclusions

Based on the data and analysis, our
results indicate the need for more
precise, flexible molecular software. Un-
chelated EDTA has a large negative
enthalpy, indicating that it is a stable
molecule, but the software does not
accept a chelated structure. It is possible
that due to the rarity of chelating
molecules and the large negative charges
of the chelated ligand that the MOPAC,
Gaussian and TINKER software were
not programmed to perform calculations
on EDTA-like molecules. For future
study, researchers must either find
different software that can deal with
molecular charges, or a keyword that
forces the calculation to run despite
presence of same. One interesting detail
meriting further study is our discovery
that EDTA is in fact strongly polar,
despite its symmetrical structure. The
overall polarity of nearly 6 Debye may
directly correlate with EDTA’s ability to
force a chelated state. Perhaps the
electric potential between the negatively
charged molecule and a positively

charged metal ion is greater than
electrostatic Oxygen-Nitrogen repulsion.
Again, this is a matter worthy of further
detailed study.
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Abstract:  In this study, the accuracies of the PM3 and the B3LYP methods
were observed in thermochemical properties. Thermochemical properties are
the one of the most difficult fields of chemistry to accurately model, so if
accurate data is calculated then that method is effective at calculating areas
of thermochemistry. Atomization energy, the chosen thermochemical
property, was calculated for a small group a hydrocarbons, optimized at
PM3 and B3LYP/6-311+G(d,p) levels of theory. This data was then
compared to bench-marked data found in an experimental chemistry
database at srdata.nist.gov/cccbdb. Results showed that when calculating
energies for molecules, higher levels of theory must always be used in order
to obtain accurate data. The PM3 method should never be used when
looking for accurate data and only for very general trends, whereas the
B3LYP/6-31G(d) method for frequency calculations gave fairly accurate
data, with 83.91 and 83.89 Mean Absolute Difference(MAD). Also, it was
observed that using a more computationally expensive geometry
optimization did not necessarily produce more accurate calculated energies.

Key words:  thermochemistry, atomization energy, hydrocarbons, bench-mark, MAD
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Introduction

There are two main reasons for doing
computational chemistry research: one, to use
the ease and effectiveness of computational
chemistry in order to model certain areas of
chemistry and the other, which is looked into
by this article, to improve or determine
accuracy of the theoretical methods making
computational chemistry more efficient.  Such
possible areas of research in computational
chemistry include organic, environmental,
medicinal, reaction, etc., which can all be used
to check efficiency.  In this article the area of
thermochemistry was used as a means of
determining and supporting certain methods’
accuracies.   
    Thermochemical properties are very
difficult to model accurately, so good results
imply good methods.  One of the easiest, while
still useful, areas of thermochemistry to
compare is atomization energies.  Atomization
energy is the difference between the molecular
energy and the combined energy of its
component atoms.  For example, the
atomization energy for H2O is

22()(2()())()AtomizationEHOEHEOEHO=−−

There is already very accurate experimental
data for atomization energies already obtained
from the computational chemistry comparison
data base at srdata.nist.gov/cccbdb.  

It is important to look not only at the very
accurate methods, but to also look at the less
accurate but less computationally expensive
methods.  The cheaper, traditional methods are
more important to maximize efficiency than
the computationally demanding ones or
complicated compound methods, because the
traditional methods are used on a more regular
basis than the expensive methods such as the
Full CI method, which has full electron
correlation.   
    The atomization energies were found for a
small molecule group of hydrocarbons.  This
list of hydrocarbons includes methane, ethane,
propane, butane, pentane, ethylene, butane,
propene, Z-2-butene, Z-2-pentene.  Z-2-butene
and Z-2 pentene were chosen because of the
accessibility to very accurate experimental
data.  A smaller sized group of molecules
helps to predict the accuracies of calculated
data for specific molecules using specific
methods, which produce specific conclusions.
These conclusions can then be compared to
more general views at method accuracies.   

Computational Approach

Gaussian was used for all of the
calculations in this article. In order to test the

Table 1: Energies yielded by PM3 optimization

PM3//B3LYP
Energy

PM3//B3LYP
ZPE

PM3//PM3
Energy

PM3//PM3
Zpe

methane -40.51828859 0.045638 -0.020766239 0.045383
ethane -79.83007986 0.07544 -0.02895405 0.074047
propane -119.1436194 0.104307 -0.037727922 -23.67435264
butane -158.4568982 0.132981 -0.046423987 0.130189
pentane -197.7685024 0.161791 -0.05426388 0.157944
ethylene -78.58707533 0.051394 0.026455563 0.049805
propene -117.9067093 0.080264 0.01012594 0.0785
Z-2-butene -157.2214861 0.109336 -0.005770023 0.107462
Z-2-pentene -196.5341042 0.13794 -0.013807856 0.135574

methane
ethane
propane
butane
pentane
ethylene
propene
Z-2-butene
Z-2-pentene

PM3//B3LYP
421.755201
726.575535
1033.07964
1339.54124
1644.86664
591.884090
902.210565
1209.36239
1515.45333

Percent Diff.
0.061019376
0.07593001
0.080966463
0.083508248
0.084432123
0.099134802
0.09784688
0.095635439
0.095138988
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accuracies of the energy calculations of the
PM3 and B3LYP/6-31G(d) methods, we ran
the hydrocarbons that we selected through a
different combination of geometry
optimizations, using the PM3 and B3LYP/6-
311+G(d,p) theories, and vibrational
frequency calculations, which produces the
single-point-energy and zero-point-energy
(ZPE). Essentially every molecule was
optimized two ways and each of the optimized
geometries was used for the two types of
vibrational frequency calculations with both
PM3 and B3LYP/6-31G(d). As was expected
the calculations using PM3 took significantly
less CPU run-time than the more expensive
B3LYP/6-31G(d).
    For the Atomization Energy calculations we
needed the single-point-energy of the Carbon
and Hydrogen atoms. They were calculated
with the molecular energy calculation with the
most accurate basis set available, B3LYP/6-
311+G(d,p), because we want to smallest
source of out-side error. To find the
Atomization energies of the hydrocarbons this
formula was used.

22()(2()())()AtomizationEHOEHEOEHO=−−

The total energy of the molecule can be found
by adding the energy from the frequency
calculation and the ZPE that the calculation
yielded.

Results and Discussion

PM3//B3LYP/6-31G(d)

Optimizing the hydrocarbons with PM3 level
of theory is significantly cheaper than other
such as B3LYP, which is why we are testing
its accuracy in this experiment. The
energy results can be seen in table 1. The
energies yielded by this calculation were
consistent and followed a pattern. As the
molecules increased in size, the energy
became increasingly negative. Also, ethylene
is less negative than ethane which can be
expected. The Atomization energies yielded
by this
optimization and calculation were very close
to the expected values. For example the
atomization energy of methane had a 6.1%
difference with the expected value. The mean
absolute difference(MAD) was 83.91, but as
can be seen from table 2 the difference
increases as the molecule's size increases. On
the other hand percent difference shows a
different trend. The percent difference does
not drastically increase as the molecules get
larger, which shows that the increasing
difference is relatively proportional to the size.
The percent difference shows that the
difference between the calculated andTable 2: AE and percent difference

B3LYP//B3LYP
Percent
Diff

methane 421.9689048 0.06156
ethane 724.1941189 0.07240
propane 1030.518779 0.07829
butane 1337.424324 0.08180
pentane 1647.043272 0.08587
ethylene 592.1316481 0.09959
propene 902.7784379 0.09854
Z-2-butene 1210.181402 0.09638

Z-2-pentene 1518.22602 0.09714

Table 3: AE and percent difference

Table 4:  Energies yielded by B3LYP/6-311+G(d,p) optimization

B3LYP//B3LYP
Energy

B3LYP//B3LYP
ZPE

B3LYP//PM3
Energy

B3LYP//PM3
ZPE

methane -40.51837515 0.045384 -0.020720887 0.045041
ethane -79.82590379 0.075059 -0.025873934 0.073764
propane -119.1392724 0.104041 -0.034115635 0.101823
butane -158.4532837 0.13274 -0.042327367 0.129679
pentane -197.7717341 0.161554 -0.05317183 0.157457
ethylene -78.58743285 0.051357 0.026789989 0.049519
propene -117.9075253 0.080175 0.010125927 0.0785
Z-2-butene -157.2215492 0.108094 -0.002398074 0.106236
Z-2-pentene -196.5380648 0.137482 -0.009994096 0.133563
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expected increases for the –enes. The
complexity of the double bonds seems to
increase the error of the calculations.

B3LYP/6-311+G(d,p)//B3LYP/6-31G(d)

    These molecules were optimized using the
most expensive method and basis set available,
in order to see if it would be significantly
different from the PM3 optimizations. The
runtimes were much longer than those
optimized at the PM3 level. For example it
took an hour and seven minutes to optimize
C5H10 with B3LYP/6-311+G(d,p) and a
minute and fifty-eight seconds at the PM3
level. The result of these energy calculations
can be seen in table 4. These energies follow
the same pattern of the ones calculated with
PM3//B3LYP/6-31G(d). They increase in size
as the complexity of the molecule increases
but only proportionally to the total energy.
    The atomization energies found using PM3
vibrational frequencies were very inaccurate
so we have disregarded them.  We compared
the calculations using the MAD and largest
errors, to see how effective the methods of
optimizing the molecule are. The MAD for the
B3LYP/6-31G(d) calculations optimized by
PM3 was 83.91 and for B3LYP/6-311+G(d,p)
it was 83.88. The difference is statistically
insignificant, so based on that data, both
methods yield relatively the same error. This
data is solidified by the similarities in the
largest errors which are -131.65 and -134.43
for PM3 and B3LYP/6-311G(d,p)
respectively. The methods also yield similar
percent differences which serves to support the
theory that a less expensive basis set can be
used to optimize the geometry and it will yield
accurate results for atomization energies.

Conclusions

    This study on computational calculations on
thermochemical properties has shown how the
accuracy of thermochemical calculations are
related to the basis set used in the geometry
optimization.  It can be inferred that without a
significant loss of accuracy, it is more efficient
to optimize the geometry of hydrocarbons with
a lower level of theory and then run a higher

level of theory when doing an energy
calculation.  The MAD of the two sets ran
with the B3LYP/6-31G(d) frequency
calculations had a difference of only .02
kcal/mol, whereas the difference between the
MAD of the PM3 frequency calculations was
562.31 kcal/mol.
    Using a low level theory, such as PM3, will
produce highly inaccurate results when
performing frequency calculations on
hydrocarbons.  It should never be used for
calculating any type of precision
thermochemical properties, only for general
trends when computational cost is very high.   

It can also be concluded that hydrocarbons
are difficult molecules for Semi-empirical and
DFT methods to model.  There was large error
present in every calculated atomization
energy; the smallest difference between a
calculated value and the corresponding
experimental value is 24.23 kcal/mol, which
occurred in the PM3//B3LYP/6-31G(d)
calculation of methane (note this was not the
most computationally expensive job).
   As the complexity of the molecule increased,
the accuracy of the calculated data stayed very
consistent. It was determined that
hydrocarbons are difficult to model, and
increased complexity of the molecule even
worsens the accuracy of the atomization
energies.  Further studies may be done on
thermochemical properties of hydrocarbons by
choosing different hydrocarbons, levels of
theory, and basis sets.
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Abstract:  One of the prominent problems in the world today is the issue of o-
zone deterioration. The layer of o-zone  in the stratosphere, the layer that
protects Earth from harmful ultraviolet rays, is deteriorating due to the
abundance of chlorofluorocarbons (CFCs) that pollute it. Because o-zone (O3) is
a highly reactive molecule, it reacts easily with these CFCs to produce O2 and
the reactive CFC molecule (usually a halogen), meaning that the CFC molecule
is not “used up,” and is still free to react with other molecules of o-zone. This
experiment attempts to find the active site of the reaction between o-zone and
five different CFCs: CFCl3, CF2Cl2, C2F3Cl3, CF2ClBr, and CH3Br. This was
done computationally by using Gaussian 6-31(d,p) calculations of the molecular
orbitals of each molecule, and the results were analyzed to find the active sites
in each reaction.

Key words:  O-zone, chlorofluorocarbons (CFCs), active site, Gaussian, 6-31(d,p), molecular
orbitals

Introduction

Perhaps one of the more important problems
plaguing the world today is that of the depletion
of the o-zone layer. The o-zone layer is a layer of
O3 molecules that sits atop the highest portion of
the stratosphere and filters out harmful
ultraviolet (UV) radiation, so that only safe
amounts reach the earth. However, because of
the production and release of chemical
compounds known as chlorofluorocarbons, or
CFCs, the o-zone layer is developing “holes,” or
places in the layer where there is a lack of O3
molecules. Obviously this is of considerable
concern, because these “holes” allow for unsafe
levels of  UV radiation to reach the earth.

The o-zone layer is in a constant reaction cycle
with itself. Since it is located in the upper
stratosphere, it receives an abundance of heat
from the sun, which provides the energy for the
reactions to take place. It is this consumption of
energy that actually filters out the harmful
ultraviolet rays radiated from the sun, which is
how the o-zone layer provides its usefulness to
all life on Earth. The energy radiated from the
sun causes a bond to split between two of the
oxygen molecules, which yields the products of
O2 (the breathable oxygen gas) and O. These two

chemicals then quickly react with each other to
once again form O3, or o-zone. This reaction is
once again fueled by the energy radiated by the
sun. This cycle is in continuous motion, meaning
that it continues to absorb the unsafe levels of
radiation from the sun with no net loss of o-zone.
The cause for the loss of o-zone occurs when an
alien molecule disrupts this  cycle.

In the case of the o-zone layer, these foreign
molecules are comprised of many different
chlorofluorocarbons, often called CFC s. These
CFCs interrupt the continuous oxygen-ozone
cycle, causing the second reaction in the cycle
(the reaction that reforms the o-zone molecule)
to cease to occur. This lowers the levels of o-
zone in certain parts of the stratosphere, causing
for the “holes” in the o-zone layer.

The chlorofluorocarbons disrupt the o-zone-
oxygen cycle by means of reacting with the o-
zone so that the individual O atom is never
produced, leaving the free O2 molecules with
nothing to react with to reform the o-zone
molecule. The halogen atom(s) attached to each
CFC are the atoms that react with the o-zone,
causing it to degrade into products other than O2
and O. However, the halogen atom is still free at
the end of the reaction, so it is capable of
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reacting with more o-zone molecules. This
reaction process is seen below, with the halogen
chlorine (Cl), a halogen often found in CFCs:

Cl· + O3 _ ClO· + O2
ClO· + O3 _ Cl· + 2 O2

Notice that the chlorine atom is reproduced at the
end of the reactions, and the process can be
repeated.

The reactive property of o-zone is a major factor
in its depletion. Quite possibly linked to this
property is the molecular structure of both o-
zone and the CFCs that react with it. The
structure of a molecule plays an important role in
determining what reacts with it, and how often
the reaction occurs. It is the goal of this journal
article to find a connection between the
molecular structure of the o-zone molecule, the
molecular structure of chlorofluorocarbons, and
the reactive tendencies of both.

Computational Approach

Using the molecular editor builder of WebMO1

on the North Carolina High School
Computational Chemistry Server2, the o-zone
molecule was built. The molecule was then
optimized using the “comprehensive cleanup”
function in the WebMO package. Following this,
the molecule was further optimized using a
Hartree/Fock Geometry Optimization at a 6-
311(d,p) basis set in the Gaussian '03 package.

After the o-zone molecule was fully optimized, a
molecular orbitals calculation was run on it,
again using a 6-311(d,p) basis set in the
Hartree/Fock level of theory. The goal of these
calculations was to obtain an accurate mapping
of electrostatic potential for the o-zone molecule.

Following the construction of the o-zone
molecule was the construction of four of the
leading chlorofluorocarbons. These four CFCs
were: trichlorofluoromethane (CFCl3),
dichlorofluoromethane (CF2Cl2), 1,2,2-trichloro-
1,1,2-trifluoroethane (C2F3Cl3), and
chloropentafluoroethane (C2F5Cl). The same
comprehensive cleanup was performed on these
molecules as was o-zone. They were then all
optimized further by means of a Geometry
Optimization calculation at the Hartree/Fock

level with a 6-311(d,p) basis set. Once these
calculations were run, the molecular orbitals of
each were calculated, once again using a
Molecular Orbitals calculation on the
Hartree/Fock level of theory with a 6-311(d,p)
basis set.

From the Molecular Orbitals calculations, an
electrostatic potential map was constructed for
each of the chlorofluorocarbons, as well as the o-
zone molecule.

Results and Discussion

The electrostatic potential mappings of each
molecule are shown below in Figs. 1.1 – 1.5. The
red portions of the maps indicate negative
regions of the molecule, or regions of the
molecule where the electrons are mainly located.
The blue portions of the maps are the positively
charged regions of the molecule, or where there
is a lack of electrons. The green portions are
neutrally charged, and play little purpose in the
context of this research. The red regions of each
molecule, being negatively charged, are likely to
bond with a positively charged pole on any
nearby molecules. The blue regions, contrary to
the red, are positively charged, so are most likely
to bond with any negatively charged poles on
nearby molecules. This extreme polarity on the
o-zone molecule accounts for its high reactivity,
because the two distinct poles allow for either
positively charged or negatively charged
molecules to interact with it.

Fig. 1.1 O-zone Electrostatic Potential
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Fig. 1.2 CFCl3 Electrostatic Potential

Fig. 1.3 CF2Cl2 Electrostatic Potential

Fig. 1.4 C2F3Cl3 Electrostatic Potential

Fig. 1.5 C2F5Cl Electrostatic Potential

As can be seen from the electrostatic potential
mappings, the o-zone has easily accessible
negative and positive poles, leaving it easily
susceptible to reacting with chlorofluorocarbons
in the surrounding atmosphere. The four CFCs
are dominantly negative, with positive regions
located near the center of the molecule. The
largely negative exterior of the CFCs allows for
them to react mainly with positively charged
molecules. The HOMO (Highest Occupied
Molecular Orbital) and LUMO (Lowest
Unoccupied Molecular Orbital) projections for
the o-zone molecule can also be useful in
determining the reaction site of the o-zone-CFC
reaction, because these projections show where
lone pair electrons are likely to be (HOMOs), as
well as where any lone pair electrons would be
likely to bond (LUMOs). These projections
contribute to helping find where the active site
on the o-zone molecule is by showing where
electrons are likely to be, and thereby narrowing
the number of potential reaction sites.

Conclusions

From the above data and experimentation, it can
be determined that the molecular structure of o-
zone, along with the structures of the
chlorofluorocarbons that interact with it, plays a
significant role in its high reactivity. From
analyzing the electrostatic potential projections
of all of the molecules, the active site was found
to be on the positive pole of the o-zone molecule,
on the middle oxygen atom. This is due to the
high negative charge commonly found on all of
the CFC molecules. These highly negatively
charged molecules interact readily with the
positively charged region of o-zone, causing a
site where the chemical reaction would most
likely occur. This conclusion can further be
supported by the fact that the negative poles of
the o-zone molecule are repulsed by the
negatively charged CFCs, leaving only the
positive pole as a place for potential reactions.

 For further experimentation, the reaction
pathway for the interaction between o-zone and
the CFCs could be experimentally determined.
This data would further knowledge about the
reaction between the o-zone molecule and a
given CFC.
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